Skip to main content
Log in

Molecular and cellular mechanisms of GABA/benzodiazepine-receptor regulation: Electrophysiological and biochemical studies

  • Published:
Neurochemical Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Bowery, N. G., Hill, D. R., and Hudson, A. L. 1983. Characteristics of GABAB receptor binding sites on rat whole brain synaptic membranes. Br. J. Pharmacol. 78:191–206.

    PubMed  Google Scholar 

  2. Czajkowski, C., and Farb, D. H. 1986. Transmembrane topology and subcellular distribution of the benzodiazepine receptor. J. Neurosci. 6:2857–2863.

    PubMed  Google Scholar 

  3. Czajkowski, C., Gibbs, T. T., and Farb, D. H. 1989. Transmembrane topology of the γ-aminobutyric acidA/benzodiazepine receptor: subcellular distribution and allosteric coupling determinedin situ. Mol. Pharmacol. 35:75–84.

    PubMed  Google Scholar 

  4. Bormann, J., Hamill, O. P., and Sakmann, B. 1987. Mechanism of anion permeation through channels gated by glycine and γ-aminobutyric acid in mouse cultured spinal neurones. J. Physiol. (Lond.) 385:243–286.

    Google Scholar 

  5. Stephenson, F. A. 1988. Understanding the GABAA receptor: a chemically gated ion channel. Biochem. J. 249:21–32.

    PubMed  Google Scholar 

  6. Schofield, P. R., Darlison, M. G., Fujita, N., Burt, D. R., Rodriguez, F. A., Rhee, L. M., Ramachandran, J., Reale, V., Glencourse, T. A., Seeburg, P. H., and Barnard, E. A. 1987. Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super-family. Nature 328:221–227.

    PubMed  Google Scholar 

  7. Levitan, E. S., Schofield, P. R., Burt, D. R., Rhee, L. M., Wisden, W., Kohler, M., Fujita, N., Rodriquez, H., Stephenson, F. A., Darlison, M. G., Barnard, E. A., and Seeburg, P. H. 1988. Structural and functional basis of GABAA receptor heterogeneity. Nature 335:76–79.

    PubMed  Google Scholar 

  8. Ymer, S., Schofield, P. R., Draguhn, A., Werner, P., Kohler, M., and Seeburg, P. H. 1989. GABAA receptor β subunit heterogeneity: functional expression of cloned cDNAs. EMBO J. 8:1665–1670.

    PubMed  Google Scholar 

  9. Pritchett, D. B., Sontheimer, H., Shivers, B. D., Ymer, S., Kettenmann, H., Schofield, P. R., and Seeburg, P. H. 1989. Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature 338:582–585.

    PubMed  Google Scholar 

  10. Shivers, B. D., Killisch, I., Sprengel, R., Sontheimer, H., Kohler, M., Schofield, P. R., and Seeburg, P. H. 1989. Two novel GABAA receptor subunits exist in distinct neuronal subpopulations. Neuron 3:327–337.

    PubMed  Google Scholar 

  11. Grenningloh, G., Rienitz, A., Schmitt, B., Methfessel, C., Zensen, M., Breyreuther, K., Gundelfinger, E. D., and Betz, H. 1987. The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors. Nature 328:215–220.

    PubMed  Google Scholar 

  12. Mamalaki, C., Stephenson, F. A., and Barnard, E. A. 1987. The GABAA/benzodiazepine receptor is a heterotetramer of homologous and heterologous subunits. EMBO J. 6:561–565.

    PubMed  Google Scholar 

  13. Pritchett, D. B., Sontheimer, H., Gorman, C. M., Kettenmann, H., Seeburg, P. H., and Schofield, P. R. 1988. Transient expression shows ligand gating and allosteric potentiation of GABAA receptor subunits. Science 242:1306–1308.

    PubMed  Google Scholar 

  14. Olsen, R. W. 1982. Drug interactions at the GABA-receptor ionophore complex. Ann. Rev. Pharmacol. Toxicol. 22:245–277.

    Google Scholar 

  15. Olsen, R. W., and Venter, J. C. (eds.) 1986. Benzodiazepine/GABA Receptors and Chloride Channels; Structural and Functional Properties. A. R. Liss, New York.

    Google Scholar 

  16. Farrant, M., and Webster, R. A. 1989. GABA antagonists: Their use and mechanisms of action. Pages 161–219,in Boulton, A. A., Baker, G. B. and Juorio, A. V. (eds.), Drugs as Tools in Neurotransmitter Research, Humana Press Inc., Clifton.

    Google Scholar 

  17. Polc, P. 1988. Electrophysiology of benzodiazepine receptor ligands: multiple mechanisms and sites of action. Prog. Neurobiol. 31:349–423.

    PubMed  Google Scholar 

  18. Lambert, J. J., Perters, J. A., and Cottrell, G. A. 1987. Actions of synthetic and endogenous steroids on the GABAA receptor. Trends Pharmacol. Sci. 8:224–227.

    Google Scholar 

  19. Mierlak, D., and Farb, D. H. 1988. Divalent cations modulate GABAA receptor affinity and desensitization. Soc. Neurosci. Abstr. 14:344.

    Google Scholar 

  20. Mayer, M. L., and Vyklicky Jr., L. 1989. The action of zinc on synaptic transmission and neuronal excitability in cultures of mouse hippocampus. J. Physiol. 415:351–365.

    PubMed  Google Scholar 

  21. Miyata, Y., and Otsuka, M. 1972. Distribution of γ-aminobutyric acid in cat spinal cord and alterations produced by local ischaemia. J. Neurochem. 19:1833–1834.

    PubMed  Google Scholar 

  22. McLaughlin, B. J., Barber, R., Saito, K., Roberts, E., and Wu, J.-Y. 1975. Immunocytochemical localization of glutamate decarboxylase in rat spinal cord. J. Comp. Neurol. 164:305–322.

    PubMed  Google Scholar 

  23. Curtis, D. R., Hosli, R. L., Johnston, G. A. R., and Johnston, I. H. 1968. The hyperpolarization of spinal motorneurons by glycine and related amino acids. Exp. Brain Res. 5:235–258.

    PubMed  Google Scholar 

  24. Barker, J. L., and Nicoll, R. A. 1973. The pharmacology and ionic dependency of amino acid responses in the frog spinal cord. J. Physiol. (Lond.). 228:259–277.

    Google Scholar 

  25. Curtis, D. R., Duggann, A. W., Felix, D., and Johnston, G. A. R. 1971. Bicuculline, an antagonist of GABA and synaptic inhibition in the spinal cord of the cat. Brain Res. 32:69–96.

    PubMed  Google Scholar 

  26. Fischbach, G. D. 1972. Synapse formation between dissociated nerve and muscle cells in low density cell cultures. Dev. Biol. 28:407–429.

    PubMed  Google Scholar 

  27. Fischbach, G. D., and Dichter, M. A. 1974. Electrophysiologic and morphologic properties of neurons in dissociated chick spinal cord cell cultures. Dev. Biol. 37:100–116.

    PubMed  Google Scholar 

  28. Fischbach, G. D., and Nelson, P. G. 1977. Cell culture in neurobiology. Pages 719–774,in Kandel, E. R. (ed.), Handbook of Physiology, Section 1, The Nervous System, American Physiological Society, Bethesda.

    Google Scholar 

  29. Nelson, P. G., Neale, E. A., and Macdonald, R. L. 1981. Electrophysiological and structural studies of neurons in dissociated cell cultures of the central nervous system. Pages 39–80, in Nelson, P. G. and Lieberman, M. (eds.), Excitable Cells in Tissue Culture, Plenum Press, New York.

    Google Scholar 

  30. Harvcy, A. L. 1984. The Pharmacology of Nerve and Muscle in Tissue Culture. A. R. Liss, New York.

    Google Scholar 

  31. Hall, Z. W., Hildebrand, J. G., and Kravitz, E. A. 1974. Chemistry of synaptic transmission. Chiron Press, Portland.

    Google Scholar 

  32. Roberts, E. 1986. GABA: The road to neurotransmitter status. Pages 1–39, in Olsen, R. W. and Venter, J. C. (eds.), Benzodiazepine/GABA Receptors and Chloride Channels; Structural and Functional Properties, Alan Liss, New York.

    Google Scholar 

  33. Rando, R. R., Bangerter, F. W., and Farb, D. H. 1981. The inactivation of γ-aminobutyric acid transaminase in dissociated neuronal cultures from spinal cord. J. Neurochem. 36:985–990.

    PubMed  Google Scholar 

  34. Farb, D. H., Berg, D. K., and Fischbach, G. D. 1979. Uptake and release of3[H]gamma-aminobutyric acid by embryonic spinal cord neurons in dissociated cell culture. J. Cell Biol. 80:651–661.

    PubMed  Google Scholar 

  35. Choi, D. W., Farb, D. H., and Fischbach, G. D. 1977. Chlordiazepoxide selectively augments GABA action in spinal cord cell cultures. Nature 269:342–344.

    PubMed  Google Scholar 

  36. Choi, D. W., Farb, D. H., and Fischbach, G. D. 1981. Chlordiazepoxide selectively potentiates GABA conductance of spinal cord and sensory neurons in cell culture. J. Neurophysiol. 45:621–631.

    PubMed  Google Scholar 

  37. Choi, D. W., Farb, D. H., and Fischbach, G. D. 1981. GABA-mediated synaptic potentials in chick spinal cord and sensory neurons. J. Neurophysiol. 45:632–643.

    PubMed  Google Scholar 

  38. Thampy, K. G., Sauls, C. D., Brinkley, B. R., and Barnes, E. M. 1983. Neurons from chick embryo cerebrum: ultrastructural and biochemical development in vitro. Dev. Brain Res. 8:101–110.

    Google Scholar 

  39. Jong, Y. J., Thampy, K. G., and Barnes, E. M. 1986. Ontogeny of GABAergic neurons in chick brain: studies in vivo and in vitro. Dev. Brain Res. 25:83–90.

    Google Scholar 

  40. Tehrani, M. H. J., and Barnes, E. M. 1986. Ontogeny of the GABA receptor complex in chick brain: studies in vivo and in vitro. Dev. Brain Res. 25:91–98.

    Google Scholar 

  41. Weiss, D. S., Barnes, E. M., and Hablitz, J. J. 1988. Whole-cell and single channel recordings of GABA-gated currents in cultured chick cerebral neurons. J. Neurophysiol. 59:495–513.

    PubMed  Google Scholar 

  42. Polc, P., Möhler, H., and Haefely, W. 1974. The effect of diazepam on spinal cord activities: possible sites and mechanisms of action. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 284:319–337.

    Google Scholar 

  43. Costa, E., Guidotti, A., and Mao, C. C. 1975. Evidence for involvement of GABA in the action of benzodiazepines: studies on rat cerebellum. Adv. Biochem. Psychopharmac. 14:113–130.

    Google Scholar 

  44. Costa, E., Guidotti, A., and Mao, C. C. 1975. A GABA hypothesis for the action of benzodiazepines. Pages 413–426, in Roberts, E., Chase, T. N. and Tower, D. B. (eds.), GABA in nervous system function, Raven Press, New York.

    Google Scholar 

  45. Haefely, W., Kulcsar, A., Möhler, H., Pieri, L., Polc, P., and Schaffner, R. 1975. Possible involvement of GABA in the central actions of benzodiazepines. Pages 131–151, in Costa, E. and Greengard, P. (eds.), Mechanism of Action of Benzodiazepines, Raven Press, New York.

    Google Scholar 

  46. Macdonald, R. L., and Barker, J. L. 1978. Benzodiazepines specifically modulate GABA-mediated postsynaptic inhibition in cultured neurons. Nature 271:563–564.

    PubMed  Google Scholar 

  47. Choi, D. W., and Fischbach, G. D. 1981. GABA conductance of chick spinal cord and dorsal root ganglion neurons in cell culture. J. Neurophysiol. 45:605–620.

    PubMed  Google Scholar 

  48. Study, R. E., and Barker, J. L. 1981. Diazepam and (−)pentobarbital-fluctuation analysis reveals different mechanisms for potentiation of GABA responses in cultured central neurons. Proc. Natl. Acad. Sci. U.S.A. 78:7180–7184.

    PubMed  Google Scholar 

  49. Barker, J. L., and Owen, D. G. 1986. Electrophysiological pharmacology of GABA and diazepam in cultured CNS neurons. Pages 135–165, in Olsen, R. W. and Venter, J. C. (eds.), Benzodiazepine/GABA Receptors and Chloride Channels; Structural and Functional Properties, Alan Liss, New York.

    Google Scholar 

  50. Bormann, J., and Sakmann, B. 1984, Properties of inhibitory chloride channels and the action of diazepam. IUPHAR 9th International Congress of Pharmacology S13–S14.

  51. Redman, G. A., and Barker, J. L. 1984. Diazepam and voltage increase GABA activated Cl ion channel opening kinetics in cultured mouse spinal neurons. Soc. Neurosci. Abstr. 10:642.

    Google Scholar 

  52. Vicini, S., Mienville, J.-M., and Costa, E. 1987. Actions of benzodiazepine and β-carboline derivatives of γ-aminobutyric acid-activated Cl channels recorded from membrane patches of neonatal rat cortical neurons in culture. J. Pharmac. exp. Ther. 243:1195–1201.

    Google Scholar 

  53. Rogers, C. J., Twyman, R. E., and Macdonald, R. L. 1988. Diazepam does not alter the gating kinetics of GABA receptor channels. Soc. Neurosci. Abstr. 14:260.17.

    Google Scholar 

  54. Squires, R. F., and Brasestrup, C. 1977. Benzodiazepine receptors in rat brain. Nature 266:732–734.

    PubMed  Google Scholar 

  55. Möhler, H., and Okada, T. 1977. Benzodiazepine receptors: Demonstration in the central nervous system. Science 198:849–851.

    PubMed  Google Scholar 

  56. Tallman, J. F., Thomas, J. W., and Gallager, D. W. 1978. GABAergic modulation of benzodiazepine binding site sensitivity. Nature 274:383–385.

    PubMed  Google Scholar 

  57. Wastek, G. J., Speth, R. C., Reisine, T. D., and Yamamura, H. I. 1978. The effect of γ-aminobutyric acid on3H-flunitrazepam binding in rat brain. Eur. J. Pharmacol. 50:445–447.

    PubMed  Google Scholar 

  58. Karobath, M., and Sperk, G. 1979. Stimulation of benzodiazepine receptor binding by γ-aminobutyric acid. Proc. Natl. Acad. Sci. U.S.A. 76:1004–1006.

    PubMed  Google Scholar 

  59. Costa, E., Guidotti, A., and Toffano, G. 1978. Molecular mechanisms mediating the action of diazepam on GABA receptors. Br. J. Pharmac. 133:239–248.

    Google Scholar 

  60. Skerritt, J. H., and Johnston, G. A. R. 1983. Enhancement of GABA binding by benzodiazepines and related anxiolytics. Eur. J. Pharmacol. 89:193–198.

    PubMed  Google Scholar 

  61. Stephenson, F. A., Watkins, A. E., and Olsen, R. W. 1982. Physico-chemical characterization of detergent-solubilized γ-aminobutyric and benzodiazepine receptor proteins from bovine brain. Eur. J. Biochem. 123:291–298.

    PubMed  Google Scholar 

  62. Schoch, P., Richards, J. G., Haring, P., Takacs, B., Stahli, C., Stachelin, T., Haefly, W., and Möhler, H. 1985. Co-localization of GABAA receptors and benzodiazepine receptors in the brain shown by monoclonal antibodies. Nature 314:168–171.

    PubMed  Google Scholar 

  63. Chan, C. Y., Gibbs, T. T., Borden, L. A., and Farb, D. H. 1983. Multiple embryonic benzodiazepine binding sites: Evidence for functionality. Life Sci. 33:2061–2069.

    PubMed  Google Scholar 

  64. Haefely, W., Kyburz, E., Gerecke, M., and Möhler, H. 1985. Recent advances in the molecular pharmacology of benzodiazepine receptors and in the structure activity relationships of their agonists and antagonists. Adv Drug. Res. 14:165–322.

    Google Scholar 

  65. Borden, L. A., Gibbs, T. T., and Farb, D. H. 1987. Identification, characterization, and developmental regulation of embryonic benzodiazepine binding sites. J. Neurosci. 7:1902–1910.

    PubMed  Google Scholar 

  66. Borden, L. A., Czajkowski, C. M., Chan, C. Y., and Farb, D. H. 1984. Benzodiazepine receptor synthesis and degradation by neurons in culture. Science 226:857–859.

    PubMed  Google Scholar 

  67. Möhler, H., Battersby, M. K., and Richards, J. G. 1980. Benzodiazepine receptor protein identified and visualized in brain tissue by a photoaffinity label. Proc. Natl. Acad. Sci. U.S.A. 77:1666–1670.

    PubMed  Google Scholar 

  68. Gibbs, T. T., Chan, C. Y., Czajkowski, C. M., and Farb, D. H. 1985. Benzodiazepine receptor photoaffinity labelling: correlation of function with binding. Eur. J. Pharmacol. 110:171–180.

    PubMed  Google Scholar 

  69. Farb, D. H., Borden, L. A., Chan, C. Y., Czajkowski, C. M., Gibbs, T. T., and Schiller, G. D. 1984. Modulation of neuronal function through benzodiazepine receptors: biochemical and electrophysiological studies of neurons in primary monolayer cell culture. Ann. N.Y. Acad. Sci. 435:1–31.

    Google Scholar 

  70. Braestrup, C., and Nielsen, M. 1983. Benzodiazepine receptors. Pages 258–384, in Iversen, L. L., Iversen, S. D. and Snyder, S. H. (eds.), Handbook of Psychopharmacology, Plenum, New York.

    Google Scholar 

  71. Gardner, C. R. 1988. Pharmacological profiles in vivo of benzodiazepine receptor ligands. Drug Dev. Res. 12:1–28.

    Google Scholar 

  72. Chan, C. Y., and Farb, D. H. 1985. Modulation of neurotransmitter action: Control of the γ-aminobutyric acid response through the benzodiazepine receptor. J. Neurosci. 5:2365–2373.

    PubMed  Google Scholar 

  73. Jensen, M. S., and Lambert, J. D. C. 1986. Electrophysiological studies in cultured mouse CNS neurones of the actions of an agonist and an inverse agonist at the benzodiazepine receptor. Br. J. Pharmac. 88:717–731.

    Google Scholar 

  74. De Deyn, P. D., and Macdonald, R. L. 1987. CGS 9896 and ZK 91296, but not CGS 8216 and Ro 15-1788, are pure benzodiazepine receptor antagonists on mouse neurons in culture. J. Pharmacol. Exp. Ther. 2421:48–55.

    Google Scholar 

  75. Vicini, S., Alho, H., Costa, E., Mienville, J.-M., Santi, M. R., and Vaccarino, F. M. 1986. Modulation of γ-aminobutyric acid-mediated inhibitory synaptic currents in dissociated cortical cell cultures. Proc. Natl. Acad. Sci. U.S.A. 83:9269–9273.

    PubMed  Google Scholar 

  76. Sigel, E., and Baur, R. 1988. Allosteric modulation by benzodiazepine receptor ligands of the GABAA receptor channel expressed inXenopus oocytes. J. Neurosci. 8:289–295.

    PubMed  Google Scholar 

  77. Van den Brink, F. G. 1977. General theory of drug-receptor interactions. Pages 169–254, in van Rossum, J. M. (ed.), Handbook of Experimental Pharmacology, Springer Verlag, Berlin.

    Google Scholar 

  78. Ehlert, F. J. 1986. “Inverse agonists”, cooperativity and drug action at benzodiazepine receptors. Trends Pharmacol. Sci. 7:28–32.

    Google Scholar 

  79. Ehlert, F. J. 1988. Estimation of the affinities of allosteric ligands using radioligand binding and pharmacological null methods. Mol. Pharmacol. 33:187–194.

    PubMed  Google Scholar 

  80. Hattori, K., Oomura, Y., and Akaike, N. 1986. Diazepam action on γ-aminobutyric acid-activated chloride currents in internally perfused frog sensory neurons. Cell. molec. Neurobiol. 6:307–322.

    PubMed  Google Scholar 

  81. Mierlak, D., and Farb, D. H. 1988. Modulation of neurotransmitter receptor desensitization: Chlordiazepoxide stimulates fading of the GABA response. J. Neurosci. 8:814–820.

    PubMed  Google Scholar 

  82. Clapham, D. E., and Neher, E. 1984. Substance P reduces acetylcholine currents in isolated bovine chromaffin cells. J. Physiol. (Lond.) 347:255–277.

    Google Scholar 

  83. Mulle, C., Benoit, P., Pinst, C., Roa, M., and Changeux, J. 1988. Calcitonin gene-related peptide enhances the rate of desensitization of the nicotinic acetylcholine receptor in cultured mouse muscle cells. Proc. Natl. Acad. Sci. U.S.A. 85:5728–5732.

    PubMed  Google Scholar 

  84. Mayer, M. L., and Vyklicky Jr., L. 1989. Regulation of NMDA receptor desensitization in mouse hippocampal neurons by glycine. Nature 338:425–427.

    PubMed  Google Scholar 

  85. Huganir, R. L., and Greengard, P. 1987. Regulation of receptor function by protein phosphorylation. Trends Pharmacol. Sci. 8:472–477.

    Google Scholar 

  86. Downing, J. E. G., and Role, L. W. 1987. Activators of protein kinase C enhance acetylcholine receptor desensitization in sympathetic ganglion neurons. Proc. Natl. Acad. Sci. U.S.A. 84:7739–7743.

    PubMed  Google Scholar 

  87. Eusebi, F., Grassi, F., Nervi, C., Caporale, C., Adamo, S., Zani, B. M., and Molinaro, M. 1987. Acetylcholine may regulate its own nicotinic receptor channel through the C-kinase system. Proc. Roy. Soc. Lond. B 230:355–365.

    Google Scholar 

  88. Middleton, P., Jaramillo, F., and Scheutze, S. M. 1986. Forskolin increases the rate of acetylcholine receptor desensitization at the rat soleus endplate. Proc. Natl. Acad. Sci. U.S.A. 83:4967–4971.

    PubMed  Google Scholar 

  89. Huganir, R. L., Delcour, A. H., Greengard, P., and Hess, G. P. 1986. Phosphorylation of the nicotinic acetylcholine receptor regulates its rate of desensitization. Nature 321:774–776.

    PubMed  Google Scholar 

  90. Hopfield, J. F., Tank, D. W., Greengard, P., and Huganir, R. L. 1988. Functional modulation of the nicotinic acetylcholine receptor by tyrosine phosphorylation. Nature 336:677–680.

    PubMed  Google Scholar 

  91. Sweetnam, P. M., Lloyd, J., Gallombardo, P., Malison, R. T., Gallager, D. W., Tallman, J. F., and Nestler, E. J. 1988. Phosphorylation of the GABAa/benzodiazepine receptor alpha-subunit by a receptor-associated protein kinase. J. Neurochem. 51:1274–1284.

    PubMed  Google Scholar 

  92. Kirkness, E. F., Bovenkerk, C. F., Ueda, T., and Turner, A. J. 1989. Phosphorylation of γ-aminobutyrate (GABA)/benzodiazepine receptors by cyclic AMP-dependent protein kinase. Biochem. J. 259:613–616.

    PubMed  Google Scholar 

  93. Gyenes, M., Farrant, M., and Farb, D. H. 1988. “Run-down” of GABAA receptor function during whole-cell recording: a possible role for phosphorylation. Mol. Pharmacol. 34:719–723.

    PubMed  Google Scholar 

  94. Stelzer, A., Kay, A. R., and Wong, R. K. S. 1988. GABAA-receptor function in hippocampal cells is maintained by phosphorylation factors. Science 241:339–341.

    PubMed  Google Scholar 

  95. Stelzer, A., and Wong, R. K. S. 1988. Activation of protein kinase C reduces GABAA mediated chloride conductance. Soc. Neurosci. Abstr. 14:913–910.

    Google Scholar 

  96. Sigel, E., and Baur, R. 1988. Activation of protein kinase C differentially modulates neuronal Na+, Ca+, and γ-aminobutyrate type A channels. Proc. Natl. Acad. Sci. USA 85:6192–6196.

    PubMed  Google Scholar 

  97. Heuschneider, G., and Schwartz, R. D. 1989. cAMP and forskolin decrease γ-aminobutyric acid-gated chloride flux in rat brain synaptoneurosomes. Proc. Natl. Acad. Sci. USA 86:2938–2942.

    PubMed  Google Scholar 

  98. Harrison, N. L., and Lambert, N. A. 1989. The effects of protein kinase activators on GABAA receptor function in cultured rat hippocampal neurons. J. Physiol. (Lond.) 412:17P.

    Google Scholar 

  99. Lambert, N. A., and Harrison, N. L. 1989. Extracellular cyclic AMP (cAMP) decreases GABAA receptor-mediated chloride current in cultured rat hippocampal neurons. Soc. Neurosci. Abstr. 15:525.

    Google Scholar 

  100. Borden, L. A., and Farb, D. H. 1988. Mechanism of γ-aminobutyric acid/benzodiazepine receptor turnover: evidence for non-lysosomal degradation. Mol. Pharmacol. 34:354–362.

    PubMed  Google Scholar 

  101. Somogyi, P., Takagi, H., Richards, J. G., and Mohler, H. 1989. Subcellular localization of benzodiazepine/GABAA receptors in the cerebellum of rat, cat, and monkey using monoclonal antibodies. J. Neurosci. 9:2197–2209.

    PubMed  Google Scholar 

  102. Meinecke, D. L., Tallman, J., and Rakic, P. 1989. GABAA/benzodiazepine receptor immunoreactivity in rat and monkey cerebellum. Brain Res. 493:303–319.

    PubMed  Google Scholar 

  103. Czajkowski, C., and Farb, D. H. 1989. Identification of an intracellular pool of γ-aminobutyric acidA/benzodiazepine receptors en route to the cell surface of brain neurons in culture. Mol. Pharmacol. 35:183–188.

    PubMed  Google Scholar 

  104. Overstreet, D. J., and Yamamura, H. I. 1979. Receptor alterations and drug tolerance. Life Sci. 25:1865–1877.

    PubMed  Google Scholar 

  105. Creese, I., and Sibley, D. R. 1981. Receptor adaptations to centrally acting drugs. Ann. Rev. Pharmacol. Toxicol. 21:357–391.

    Google Scholar 

  106. Greenblatt, D. J., and Shader, H. I. 1978. Dependence, tolerance and addiction to benzodiazepines: Clinical and pharmacokinetic considerations. Drug Metab. Rev. 8:13–28.

    PubMed  Google Scholar 

  107. Haigh, J. R. M., and Feely, M. 1988. Tolerance to the anticonvulsant effects of benzodiazepines. Trends Pharmacol. Sci. 9:361–366.

    PubMed  Google Scholar 

  108. Rosenberg, H. C., and Chiu, T. H. 1981. Tolerance during chronic benzodiazepine treatment associated with decreased receptor density. Eur. J. Pharmacol. 70:453–460.

    PubMed  Google Scholar 

  109. Tietz, E. I., Rosenberg, H. C., and Chiu, T. H. 1986. Autoradiographic localization of benzodiazepine receptor downregulation. J. Pharmacol. Exp. Ther. 236:284–291.

    PubMed  Google Scholar 

  110. Miller, L. G., Greenblatt, D. J., Barnhill, J. G., and Shader, R. I. 1988. Chronic benzodiazepine administration. I. Tolerance is associated with benzodiazepine receptor downregulation and decreased γ-aminobutyric acidA receptor function. J. Pharmacol. Exp. Ther. 246:170–176.

    PubMed  Google Scholar 

  111. DiStefano, P., Casse, K. R., Colello, D., and Boxman, H. B. 1979. Increased specific binding of3H-diazepam in rat brain following chronic diazepam administration. Cell Biol. Int. Rep. 3:163–167.

    PubMed  Google Scholar 

  112. Möhler, H., Okada, T., and Enna, S. J. 1978. Benzodiazepine and neurotransmitter binding in rat brain after chronic administration of diazepam and phenobarbital. Brain Res. 156:391–395.

    PubMed  Google Scholar 

  113. Gallager, D. W., Lakoski, J. M., Gonsales, S. F., and Rauch, S. L. 1984. Chronic benzodiazepine treatment decreases postsynaptic GABA sensitivity. Nature 308:74–77.

    PubMed  Google Scholar 

  114. Heninger, C., and Gallager, D. W. 1988. Altered γ-aminobutyric acid/benzodiazepine interaction after chronic diazepam exposure. Neuropharmacology 27:1073–1076.

    PubMed  Google Scholar 

  115. Miller, L. G., Greenblatt, D. J., and Shader, R. I. 1987. Benzodiazepine receptor binding: Influence of physiologic and pharmacologic factors. Biopharm. Drug Disp. 8:103–114.

    Google Scholar 

  116. Sher, P. K., Study, R. E., Mazzetta, J., Barker, J. L., and Nelson, P. G. 1983. Depression of benzodiazepine binding and diazepam potentiation of GABA-mediated inhibition after chronic exposure of spinal cord cultures to diazepam. Brain Res. 268:171–176.

    PubMed  Google Scholar 

  117. Prezioso, P. J., and Neale, J. H. 1983. Benzodiazepine receptor binding by membranes from brain cell cultures following chronic treatment with diazepam. Brain Res. 288:354–358.

    PubMed  Google Scholar 

  118. Shibla, D. B., Gardell, M. A., and Neale, J. H. 1981. The insensitivity of developing benzodiazepine receptors to chronic treatment with diazepam. Brain Res. 210:471–474.

    PubMed  Google Scholar 

  119. Maloteaux, J.-M., Octave, J.-N., Gossuin, A., Laterre, C., and Trouet, A. 1987. GABA induces down-regulation of benzodiazepine-GABA receptor complex in the rat cultured neurons. Eur. J. Pharmacol. 144:173–183.

    PubMed  Google Scholar 

  120. Schiller, G. D., and Farb, D. H. 1986. Enhancement of benzodiazepine binding by GABA is reduced rapidly during chronic exposure to flurazepam. Ann. N.Y. Acad. Sci. 463:221–223.

    Google Scholar 

  121. Roca, D., Schiller, G. D., and Farb, D. H. 1988. Chronic caffeine or theophylline exposure reduces GABA/benzodiazepine receptor site interactions. Mol. Pharmacol. 33:481–485.

    PubMed  Google Scholar 

  122. Friedman, L. K., Gibbs, T. T., and Farb, D. H. 1989. Regulatory effects of barbiturates and steroids on the GABAA receptor complex in culture. Soc. Neurosci. Abstr. 15:994.

    Google Scholar 

  123. Asano, T., and Spector, S. 1979. Identification of inosine and hypoxanthine as endogenous ligands for the brain benzodiazepine-binding sites. Proc. Natl. Acad. Sci. U.S.A. 76:977–981.

    PubMed  Google Scholar 

  124. Roca, D. J., Rozenberg, I., and Farb, D. H. 1988. Homologous and heterologous regulation of the GABA/benzodiazepine receptor complex. Soc. Neurosci. Abstr. 14:345.

    Google Scholar 

  125. Tehrani, M. H. J., and Barnes, E. M. 1988. GABA down-regulates the GABA/benzodiazepine receptor complex in developing cerebral neurons. Neurosci. Lett. 87:288–292.

    PubMed  Google Scholar 

  126. Pritchett, D. B., Luddens, H., and Seeburg, P. H. 1989. Type I and type II GABAA-benzodiazepine receptors produced in transfected cells. Science 245:1389–1392.

    PubMed  Google Scholar 

  127. Deisz, R. A., and Prince, D. A. 1989. Frequency-dependent depression of inhibition in guinea pig neocortexin vitro by GABAB receptor feedback on GABA release. J. Physiol. (Lond.) 412:513–541.

    Google Scholar 

  128. Thompson, S. M., and Gahwiler, B. H. 1989. Activity-dependent disinhibition. III. Desensitization and GABAB receptor-mediated presynaptic inhibition in the hippocampus in vitro. J. Neurophysiol. 61:524–533.

    PubMed  Google Scholar 

  129. Huguenard, J. R., and Alger, B. E. 1986. Whole-cell voltage-clamp study of the fading of GABA-activated currents in acutely dissociated hippocampal neurons. J. Neurophysiol. 56:1–18.

    PubMed  Google Scholar 

  130. McCarren, M., and Alger, B. E. 1985. Use-dependent depression of IPSPs in rat hippocampal pyramidal cells in vitro. J. Neurophysiol. 53:557–571.

    PubMed  Google Scholar 

  131. Thompson, S. M., and Gahwiler, B. H. 1989. Activity-dependent disinhibition. I. Repetitive stimulation reduces IPSP driving force and conductance in the hippocampus in vitro. J. Neurophysiol. 61:501–511.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Ermino Costa

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farrant, M., Gibbs, T.T. & Farb, D.H. Molecular and cellular mechanisms of GABA/benzodiazepine-receptor regulation: Electrophysiological and biochemical studies. Neurochem Res 15, 175–191 (1990). https://doi.org/10.1007/BF00972208

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00972208

Key Words

Navigation