Skip to main content
Log in

GABAergic mechanisms in the electrophysiological actions of ethanol on cerebellar neurons

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We have found that the partial inverse benzodiazepine agonists Ro 15-4513 and FG 7142 antagonize the depressant electrophysiologial effects of locally applied ethanol in the cerebellum. Although absolute tissue concentrations are not known, dose-response curves constructed using pressure-ejection doses as previously described (31, 25) we found that FG 7142 was more efficacious, but less potent than Ro 15-4513. Our observation that ethanol and inverse benzodiazepine agonists have interactions which are not competitive might suggest that these two drugs act through separate, but interactive mechanisms in order to produce the observed ethanol antagonism. If such independent interactions were mediated at different sites on a given macromolecular complex, such as the GABAa/Cl channel, then one might expect to find allosteric interactions between those sites as well as with the functional response of the complex to GABA activation. Indeed, this hypothesis is consistent with the recent finding of Harris and collaborators that ethanol potentiates the inverse agonist actions of Ro 15-4513 and FG 7142. On the other hand, we were unable to find large ethanol-induced potentiations of GABA effects on all neurons which showed depressant responses to ethanol administration in rat cerebellum. However we did find that the GABAa antagonist, bicuculline, blocks the depressant effects of ethanol on the same neurons. We conclude that the interaction between ethanol and GABA probably does not occur directly at the GABAa receptor site, but that the GABAa mechanism does play a permissive role in the ethanol-induced depressions of cerebellar Purkinje neurons. Thus, although a postsynaptic GABAa mechanism may not be the primary locus of action at which ethanol causes depressant electrophysiological responses of neurons, activation of the GABAa receptor may be required to make cerebellar Purkinje neurons responsive to the depressant actions of ethanol. Further investigations will be required to determine the pre vs postsynaptic nature of this interaction of ethanol with the GABA mechanism of action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Costa, E., Guidotti, A., Mao, C.C., and Suria, A. 1975. New concepts on the mechanism of action of benzodiazepines. Life Sci. 17:167–185.

    PubMed  Google Scholar 

  2. Cott, J. A., Carlsson, A. Engel, J., and Lindqvist, M. 1974. Suppression of ethanol-induced locomotor stimulation by GABA-like drugs. Nauyn-Schmiedeb Arch. Pharmacol. 295:203–209.

    Google Scholar 

  3. Liljequist, S., and Engel, J. 1982. Effects of GABAergic agonists and antagonists on various ethanol-induced behavioral changes. Psychopharmacology 78:71–75.

    PubMed  Google Scholar 

  4. Martz, A. Deitrich, R.A., and Harris, R.A. 1983. Behavioral evidence for the involvement of γ-aminobutyric acid in the actions of ethanol. Eur. J. Pharmacol. 89:53–62.

    PubMed  Google Scholar 

  5. Burch, T.P., and Ticku, M.K. 1980. Ethanol enhances [3H]diazepam binding at the benzodiazepine-GABA-receptor-ionophore complex. Eur. J. Pharm. 67:325–326.

    Google Scholar 

  6. Skolnick, P., and Paul, S.M. 1981. Benzodiazepine receptors. Annual Reports in Medicinal Chemistry 16:21–29.

    Google Scholar 

  7. Allan, A.M., and Harris, R.A. 1985. Ethanol and barbiturates enhance GABA-stimulated influx of36Cl in isolated brain membranes. Pharmacologist 27:125.

    Google Scholar 

  8. Allan, A.M., and Harris, R.A. 1986. Gamma-aminobutyric acid and alcohol actions: Neurochemical studies of long sleep and short sleep mice. Life Sci. 39:2005–2015.

    PubMed  Google Scholar 

  9. Suzdak, P.D., Glowa, J.R., Crawley, J.N., Schwartz, R.D., Skolnick, P., and Paul, S.M. 1986. A selective imidazobenzo-diazepine antagonist of ethanol in the rat. Science 234:1243–1247.

    PubMed  Google Scholar 

  10. Suzdak, P.D., Schwartz, R.D., Skolnick, P., and Paul, S.M. 1986b. Ethanol stimulates gamma-aminobutyric acid receptor mediated chloride transport in rat brain synaptoneurosomes.Proc. Natl. Acad. Sci. USA 83:4071–4075.

    PubMed  Google Scholar 

  11. Ticku, M.K., Lowrimore, P., and Lehoullier, P. 1986. Ethanol enhances GABA-induced36Cl influx in primary spinal cord cultured neurons. Brain Res. Bull. 17:123–126.

    PubMed  Google Scholar 

  12. Allan, A.M., and Harris, R.A. 1987. Involvement of neuronal chloride channels in ethanol intoxication, tolerance, and dependence. In: Galanter, M., ed. Recent Developments in Alcoholism, Vol. 5. Plenum Press, New York, pp. 313–325.

    Google Scholar 

  13. Celentano, J.J., Gibbs, T.T., and Farb, D.H. 1988. Ethanol potentiates GABA- and glycine-induced chloride currents in chick spinal cord neurons. Brain Res. 455:377–380.

    PubMed  Google Scholar 

  14. Nestoros, J.N. 1980. Ethanol specifically potentiates GABA-mediated neurotransmission in feline cerebral cortex. Science 209:708–710.

    PubMed  Google Scholar 

  15. Mereu, G., and Gessa, G.L. 1985. Low doses of ethanol inhibit the firing of neurons in the substantia nigra, pars reticulata: A GABAergic effect? Brain Res. 360:325–330.

    PubMed  Google Scholar 

  16. Bloom, F.E., and Siggins, R.G. 1987. Electrophysiological action of ethanol at the cellular level. Alcohol 4:331–337.

    PubMed  Google Scholar 

  17. Carlen, P.L., Gurevich, N., and Durand, D. 1982. Ethanol in low doses augnents calcium-mediated mechanisms measured intracellularly in hippocampal neurons. Science 215:306–309.

    PubMed  Google Scholar 

  18. Harris, D.P., and Sinclair, J.G. 1984. Ethanol GABA interactions at the rat Purkinje cell. Gen. Pharmacol. 15:449–454.

    PubMed  Google Scholar 

  19. Siggins, G.R., Pittman, Q.J., and French, E.D. 1987. Effect of ethanol on CA1 and CA3 pyramidal cells in the hippocampal slice preparation: An intracellular study. Brain Res. 414:22–34.

    PubMed  Google Scholar 

  20. Bonetti, E.P., Pole, P., and Pieri, L. 1984. An azido analogue of the benzodiazepine antagonist Ro15-1788 (Ro15-4513) behaves as a partial inverse benzodiazepine agonist. Neurosci. Lett. Suppl. 18:S30.

    Google Scholar 

  21. Nutt, D.J., and Lister, R.G. 1987. The effect of the imidazodiazepine Ro 15-4513 on the anticonvulsant effects of diazepam, sodium pentobarbital and ethanol. Brain Res. 413:193–196.

    PubMed  Google Scholar 

  22. Polc, P. 1985. Interactions of partial inverse benzodiazepine agonists Ro15-4513 and FG 7142 with ethanol in rats and cats. Br. J. Pharm. 86:465P.

    Google Scholar 

  23. Bonetti, E.P., Burkard, W.P., Gabl, M., and Mohler, H. 1985. The partial inverse benzodiazepine agonist Ro15-4513 antagonizes acute ethanol effects in mice and rats. Br. J. Pharmacol. 86:463P.

    Google Scholar 

  24. Hoffman, P.L., Tabakoff, B., Szqbo, G., Suzdak, P.D., and Paul, S.M. 1987. Effect of imidazobenzodiazepine, Ro15-4513, on the incoordination and hypothermia produced by ethanol and pentobarbital. Life Sci. 41:611–619.

    PubMed  Google Scholar 

  25. Palmer, M.R., Fossom, L.H. and Gerhardt, G.A. 1986. Micro pressure-ejection techniques for mammalian neuropharmacological investigations, Pages 169–187,in Geller, H.M., ed.Electrophysiological Techniques in Pharmacology, Alan R. Liss, Inc., New York.

    Google Scholar 

  26. Granholm, A.-C. E., and Palmer, M.P. 1988. Electrophysiological effects of norepinephrine on Purkinje neurons in intraocular cerebellar grafts: a-vs b-specificity. Brain Res. 459:256–264.

    PubMed  Google Scholar 

  27. Palmer, M.R., van Horne, C.G., Harlan, T.J., and Moore, E.A. 1988. Antagonism of ethanol effects on cerebellar Purkinje neurons by the benzodiazepine inverse agonists Ro 15-4513 and FG 7142: Electrophysiological studies. J. Pharmacol. Exp. Ther. 247:1018–1024.

    PubMed  Google Scholar 

  28. Sorensen, S., Palmer, M., Dunwiddie, T., and Hoffer, B. 1980. Electrophysiological correlates of ethanol-induced sedation in differentially sensitive lines of mice. Science 210:1143–1145.

    PubMed  Google Scholar 

  29. Palmer, M.P., and Hoffer, B.J. 1980. Catecholamine modulation of enkephalin-induced electrophysiological responses in cerebral cortex. J. Pharmacol Exp. Ther. 213:205–215.

    PubMed  Google Scholar 

  30. Palmer, M.P. 1982. Micro pressure-ejection: A complementary technique to microiontophoresis for neuropharmacological studies in the mammalian central nervous system. J. Electrophysiol. Tech. 9:123–139.

    Google Scholar 

  31. Gerhardt, G.A., and Palmer, M.P. 1987. Characterization of the techniques of pressure ejection and microiontophoresis using in vivo electrochemistry. J. Neuroscience Methods, 22:147–159.

    Google Scholar 

  32. Braestrup, C., Honroe, T., Nielsen, M., Petersen, E.N., and Jensen, L.H. 1984. Ligands for benzodiazepine receptors with positive and negative efficacy. Biochem. Pharmacol. 33:859–862.

    PubMed  Google Scholar 

  33. Harris, R.A., Allan, A.M., Daniell, L.C., and Nixon, C. 1988. Antagonism of ethanol and pentobarbital actions by benzediazepine inverse agonists: Neurochemical Studies. J. Pharmacol. Exp. Ther. 247:1012–1017.

    PubMed  Google Scholar 

  34. Mehta, A.K., and Ticku, M.K. 1988. Ethanol potentiation of GABAergic transmission in cultured spinal cord neurons involves γ-aminobutyric acid-gated chloride channels. J. Pharmacol. Exp. Ther. 246:558–564.

    PubMed  Google Scholar 

  35. Stone, T.W. 1985. Microiontophoresis and Pressure Efection. John Wiley and Sons, New York.

    Google Scholar 

  36. Dunwiddie, T.V. and Fredholm, B.B. 1985. Adenosine modulation of synaptic responses in rat hippocampus: Possible role of inhibition or activation of adenylate cyciase, Pages 259–272.in Cooper, D.M.F. and Seamon, K.B., eds. Advances in Cyclic Nucleotide and Protein Phosphorylation Research, Raven Press, New York.

    Google Scholar 

  37. Pruett, J.K., Walle, T., and Walle, U.K. 1980. Propranolol effects on membrane repolarization time in isolated canine Purkinje fibers: Threshold tissue content and the influence of exposure time. J. Pharmacol. Exp. Ther. 215:539–543.

    PubMed  Google Scholar 

  38. Brodie, M.S., Lee, K., Fredholm, B.B., Stahle, L., and Dunwiddie, T.V. 1987. Central versus peripheral mediation of reposes to adenosine receptor agonists: Evidence against a central mode of action. Brain Res. 415:323–330.

    PubMed  Google Scholar 

  39. Dunwiddie, T.V., Basile, A.S., and Palmer, M.P. 1984. Electrophysiological responses to adenosine analogs in rat hippcampus and cerebellum: Evidence for mediation by adenosine receptors of the A1 subtype. Life Sci. 34:37–47.

    PubMed  Google Scholar 

  40. Lister, G.R., and Nutt, D.J. 1987. Is Ro 15-4513 a specific alcohol antagonist? Trends in Neuroscience, 10:223–225.

    Google Scholar 

  41. Rogers, J., Siggins, G.R., Schulman, J.A., and Bloom, F.E. 1980. Physiological correlates of ethanol intoxication, tolerance and dependence in rat cerebellar Purkinje cells. Brain Res. 196:183–198.

    PubMed  Google Scholar 

  42. Sorensen, S., Carter, D., Marwaha, J., Baker, R., and Freeman, R. 1981. Disinhibition of cerebellar Purkinje neurons from noradrenergic inhibition during the rising phase blood ethonol. J. Stud. Alcohol. 42:908–917.

    PubMed  Google Scholar 

  43. Basile, T., Hoffer, B., and Dunwiddie, T. 1983. Differential sensitivity of cerebellar Purkinje neurons to ethanol in selectively outbred lines of mice: Maintenance in vitro independent of synaptic transmission. Brain Res. 264:69–78.

    PubMed  Google Scholar 

  44. Davidoff, R.A. 1973. Alcohol and presynaptic inhibition in an isolated spinal cord preparation. Arch. Neurol. 28:60–63.

    PubMed  Google Scholar 

  45. George, F., and Chu, N-S. 1984. Effects of ethanol on Purkinje cells recorded from cerebellar slices. Alcohol 1:353–358.

    PubMed  Google Scholar 

  46. Seil, F.J., Leiman, A.L., Herman, M.M., and Fisk, R.A. 1977. Direct effects of ethanol on central nervous system cultures: An electrophysiological and morphological study. Exp. Neurol., 55:390–404.

    PubMed  Google Scholar 

  47. Sinclair, J.G., and Lo, G.F. 1981. The effect of ethanol on cerebellar Purkinje cell discharge pattern and inhibition evoked by local surface stimulation. Brain Res. 204:465–471.

    PubMed  Google Scholar 

  48. Palmer, M.R., Sorensen, S.R., Freedman, R., Olson, L., Hoffer, B.J., and Seiger, P. 1982. Differential ethanol sensitivity of intraocular cerebellar grafts in long-sleep and short-sleep mice. J. Pharmacol. Exp. Ther. 222:480–487.

    PubMed  Google Scholar 

  49. Curtis, D.R., and Felix, D. 1971. The effect of bicuculline upon synaptic inhibition in the cerebral and cerebellar cortices of the cat. Brain Res. 34:301–321.

    PubMed  Google Scholar 

  50. Woodward, D.J., Hoffer, B.J., Siggins, G.R., and Bloom, F.E. 1971. The ontogenetic development of synaptic junctions synaptic activation and responsiveness to neurotransmitter substances in rat cerebellar Purkinje cells. Brain Res. 34:73–79.

    PubMed  Google Scholar 

  51. Geller, H.M., Taylor, D.A., and Hoffer, B.J. 1978. Benzodiazepines and central inhibitory mechanisms. Nauyn-Schmiedeberg's Arch. Pharmacol. 304:81–88.

    Google Scholar 

  52. Phillis, J.W., and Tebecis, A.K. 1967. The responses of thalamic neurons to iontophoretically applied monoamines. J. Physiol. 192:715–745.

    PubMed  Google Scholar 

  53. Straughan, D.W. and Watson, J.F. 1972. Monoamine effects on cortical neurones and q-aminobutyric acid. 5th International Congress on Pharmacology (San Francisco).

  54. Dray, A. 1975. Comparison of bicuculline methochloride with bicuculline and picorotoxin as antagonists of amino acid and monoamine depression of neurons in the rat brainstem. Neuropharmacol. 14:887–891.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Erminio Costa

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmer, M.R., Hoffer, B.J. GABAergic mechanisms in the electrophysiological actions of ethanol on cerebellar neurons. Neurochem Res 15, 145–151 (1990). https://doi.org/10.1007/BF00972204

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00972204

Key Words

Navigation