Skip to main content
Log in

Acidosis-induced modifications of high-affinity choline uptake by synaptosomes: Effects of pH readjustment

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Acidosis (pH 6.0) led to significant decrease in high—affinity choline uptake by rat brain synaptosomes. The effects persisted following pH readjustment (7.4) of the incubation medium, consisting of decrease in both Km and Vmax of the affinity system. pH readjustment coincided with synaptosomal leakage of lactate dehydrogenase (LDH) and with instability of the synaptosomal suspension as evidenced from turbidity modifications of the preparation. LDH leakage occurred when acidosis was performed with lactic acid, whereas it was not seen following H3PO4 acidosis, probably because of the rapid diffusion of the protonated form of lactic acid across membranes. Turbidity modifications of the suspension were prevented by EDTA. The present results indicate that acidosis to pH level comparable to what is observed in brain ischemia is deleterious for cholinergic mechanisms. They also suggest that alkaline pH shifts that occur after blood reperfusion of ischemic brain tissue might be critical for the survival of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Siesjö, B. K. 1988. Acidosis and ischemic brain damage. Neurochem. Pathol. 9:31–88.

    PubMed  Google Scholar 

  2. Nakada, T., Houkin, K., Hida, K., and Kwee I. L. 1991. Rebound alkalosis and persistent lactate: Multinuclear (1H,13C,31P) NMR spectroscopic studies in rats. Magn. Reson. Med. 18:9–14.

    PubMed  Google Scholar 

  3. LaManna, J. C., Griffith J. K., Cordisco, B. R., Lin, C.-W., and Lust, W. D. 1992. Intracellular pH in rat brainin vivo and brain slices. Can. J. Physiol. Pharmacol. 70:S269-S277.

    PubMed  Google Scholar 

  4. Pastuszko, A., Wilson, D. F., and Erecinska, M. 1982. Neurotransmitter metabolism in rat brain synaptosomes: Effect of anoxia and pH. J. Neurochem. 38:1657–1667.

    PubMed  Google Scholar 

  5. Lowry, O. H., Rosebrough, N. J., Farr, J. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  6. Leonards, K. S. 1988. Changes in the surface charge properties of isolated cardiac sarcolemmal vesicles measured by light scattering. I. Characteristics of rat and canine preparations. Biochim. Biophys. Acta. 938:293–309.

    PubMed  Google Scholar 

  7. Massarelli, R., Ciesielski-Treska, J., Ebel, A., and Mandel, P. 1974. Kinetics of choline uptake in neuroblastoma clones. Biochem. Pharmacol. 23:2857–2865.

    PubMed  Google Scholar 

  8. Massarelli, R., Sensenbrenner, M., Ebel, A., and Mandel, P. 1974. Kinetics of choline uptake in mixed neuronal-glial, and exclusively glial cultures. Neurobiology 4:414–418.

    PubMed  Google Scholar 

  9. Mykita, S., Ferret, B., and Massarelli, R. 1987. Effect of external high, potassium and pH on the uptake of choline in glial and neuronal cells in culture. Neurochem. Res. 12:681–685.

    PubMed  Google Scholar 

  10. Roos, A. 1975. Intracellular pH and distribution of weak acids across cell membranes. A study of D- and L-Lactate and of DMO in rat diaphragm. J. Physiol. 249:1–25.

    PubMed  Google Scholar 

  11. De Hemptinne, A., Marrannes, R., and Vanheel, B. 1983. Influence of organic acids on intracellular pH. Am. J. Physiol. 245:C178-C183.

    PubMed  Google Scholar 

  12. Aronson, P. S. 1985. Kinetic properties of the plasma membrane Na+/H+ exchanger. Annu. Rev. Physiol. 47:545–560.

    PubMed  Google Scholar 

  13. Ohki, S., and Düzgünes, N. 1979. Divalent cation-induced interaction of phospholipid vesicle, and monolayer membranes. Biochim. Biophys. Acta. 552:438–449.

    PubMed  Google Scholar 

  14. Meers, P., Hong, K. and Papahadjopoulos, D. 1988. Free fatty acid enhancement of cation-induced fusion of liposomes: synergism with synexin and other promoters of vesicle aggregation. Biochemistry. 27:6784–6794.

    PubMed  Google Scholar 

  15. Lin, B. Z., Yin, C. C., and Hauser, H. 1993. The effect of positive and negative pH-gradients on the stability of small unilamellar vesicles of negatively charged phospholipids. Biochim. Biophys. Acta. 1147:237–244.

    PubMed  Google Scholar 

  16. Barber, A. A. 1963. Addendum: Mechanisms of lipid peroxide formation in rat tissue homogenates. Radiat. Res. Suppl. 3:33–43.

    PubMed  Google Scholar 

  17. Bernheim, F. 1963. Biochemical implications of pro-oxidants and antioxidants. Radiat. Res. Suppl. 3:17–32.

    PubMed  Google Scholar 

  18. Siesjö, B. K., Bendek, G., Koide, T., Westerberg, E., and Wieloch, T. 1985. Influence of acidosis on lipid peroxidation in brain tissuesin vitro. J. Cereb. Blood. Flow Metab. 5:253–258.

    PubMed  Google Scholar 

  19. Bralet, J., Bouvier, C., Schreiber, L., and Boquillon, M. 1991. Effect of acidosis on lipid peroxidation in brain slices. Brain Res. 539:175–177.

    PubMed  Google Scholar 

  20. Cancela, J. M., Bralet, J., and Beley, A. 1994. Effects of iron-induced lipid peroxidation and of acidosis on choline uptake by synaptosomes. Neurochem. Res. 19:833–837.

    PubMed  Google Scholar 

  21. Kalimo, H., Rehncrona, S., Söderfeldt, B., Olsson, Y., and Siesjö, B. K. 1981. Brain lactic acidosis and ischemic cell damage: 2 Histopathology. J. Cereb. Blood Flow Metab. 1:313–327.

    PubMed  Google Scholar 

  22. Jakubovicz, D. E., and Klip, A. 1989. Lactic acid-induced swelling in C6 glial cells via Na+/H+ exchange. Brain. Res. 485:215–224.

    PubMed  Google Scholar 

  23. Hansen, A. J. 1985. Effects of anoxia on ion distribution in the brain. Physiol. Rev. 65:101–148.

    PubMed  Google Scholar 

  24. Hillered, L., Ernster, L., and Siesjö, B. K. 1984. Influence ofin vitro lactic acidosis and hypercapnia on respiratory activity of isolated rat brain mitochondria. J. Cereb. Blood Flow Metab. 4:430–437.

    PubMed  Google Scholar 

  25. Walz, W., and Harold, D. E. 1990. Brain lactic acidosis and synaptic function. Can. J. Physiol. Pharmacol. 68:164–169.

    PubMed  Google Scholar 

  26. Kahu, D. A., Giffard, R. G., and Choi, D. W. 1993. Neuroprotective effects of glutamate antagonists and extracellular acidity. Science. 260:1516–1518.

    PubMed  Google Scholar 

  27. Tombaugh, G. C., and Sapolsky, R. M. 1993. Evolving concepts about the role of acidosis in ischemic neuropathology. J. Neurochem. 61:793–803.

    PubMed  Google Scholar 

  28. Kontos, H. A., Raper, A. J., and Patterson, J. L. 1977. Analysis of vasoactivity of local pH, pCO2 and bicarbonate on pial vessels. Stroke 8:358–360.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To whom to address reprint requests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cancela, J.M., Beley, A. Acidosis-induced modifications of high-affinity choline uptake by synaptosomes: Effects of pH readjustment. Neurochem Res 20, 863–867 (1995). https://doi.org/10.1007/BF00969699

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00969699

Key Words

Navigation