Skip to main content
Log in

Distribution of zinc metallothionein I mRNA in rat brain using in situ hybridization

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Metallothionein (MT) isoforms I and II were first identified and characterized in our laboratories in several regions of brain, in hippocampal neurons in primary culture, and in retinoblastoma and neuroblastoma cell lines. In this study, by having employed the MT-I cDNA as a probe, we sought to gain additional insight about the function of MT by discerning the regional distribution of its mRNA. Northern blot analyses of brain mRNA revealed that the administration of zinc enhanced dramatically MT-I mRNA (570 bp). The in situ hybridization study revealed that MT-I mRNA was located in several areas of brain, with the highest concentrations found in the cerebellum, hippocampus, and ventricles. The results of these studies are interpreted to suggest that zinc enhances the synthesis of MT mRNA and MT in turn may participate in zinc associated functions in neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

MT-I:

Metallothionein I isoform

mRNA:

Messenger ribonucleic acid

35S dCTP:

35S Deoxycytidine triphosphate

32P dCTP:

32P Deoxycytidine triphosphate

icv:

Intracerebroventricularly

IP:

Intraperitoneally

PBS:

Paraformaldehyde phosphate buffered saline solution

Tris:

2 amino-2-hydroxymethylpropane-1,3 diol

EDTA:

Ethylenediaminetetraacetic acid

cDNA:

Complimentary deoxyribonucleic acid

bp:

Base pair

References

  1. Fredrickson, C. Y. 1989. Neurobiology of zinc and zinc containing neurons. Int. Rev. Neurobiol. 31:145–238.

    Google Scholar 

  2. Hamer D. H. 1986. Metallothionein. Ann. Rev. Biochem. 55:913–951.

    Google Scholar 

  3. Kägi J. H. R., and Kojima Y. 1987. Chemistry and biochemistry of metallothionein. Experientia Supplementum 52:25–61.

    Google Scholar 

  4. Kägi J. H. R., and Schaffer A. 1988. Biochemistry of metallothionein. Biochemistry 27:8509–8515.

    Google Scholar 

  5. Paliwal, V. K., and Ebadi, M. 1989. Biochemical properties of metallothionein isoforms from bovine hippocampus. Exp. Brain Res. 75:477–482.

    Google Scholar 

  6. Takahashi, T., Paliwal, V. K., and Ebadi, M. 1988. Subcellular distribution of zinc and the presence of a metallothionein-like protein in bovine retina. Neurochem. Int. 13:525–530.

    Google Scholar 

  7. Awada, A., Govitrapong, P., Hama, Y., Hegazy, M., and Ebadi, M. 1989. Presence of metallothionein-like in the bovine pineal gland. J. Neurol. Trans. 76:129–144.

    Google Scholar 

  8. Young, J. K., Garvey, J. S., and Huang, P. C. 1991. Glial immunoreactivity for metallothionein in the rat brain. Glia 4:602–610.

    Google Scholar 

  9. Suzuki, K., Nakajima, K., Kawaharada, U., Hara, F., Uehara, K., Otaki, N., Kimura, M., and Tamura, Y. 1992. Localization of metallothionein in the brain of Macaca Fascicularis. Acta Histochem. Cytochem. 25:609–616.

    Google Scholar 

  10. Hidalgo, J., Campmany, L., Marti, O., and Armario, A. 1991. Metallothionein-I induction by stress in specific brain areas. Neurochem. Res. 16:1145–1148.

    Google Scholar 

  11. Luce, M. C., Schberg, J. P., and Bunn, C. L. 1993. Metallothionein expression and stress responses in aging human deploid fibroblasts. Exp. Gerontol. 28:17–38.

    Google Scholar 

  12. Saijoh, K., Kuno, T., Shuntoh, H., Tanaka, C., and Sumino, K. 1989. Molecular cloning of cDNA for rat brain metallothionein-II and regulation of its gene expression. Pharmacol. Toxicol. 64:464–468.

    Google Scholar 

  13. Kille, P., Stephens, P. E., and Kay, J. 1991. Elucidation of cDNA sequence for metallothioneins from rainbow trout, stone loach and pike liver using the polymerase chain reaction. Biochim. Biophys. Acta 1089:407–410.

    Google Scholar 

  14. Inoue, K., Akita, N., Shiba, T., Satake M., and Yamashita, S. 1992. Metal-inducible activities of metallothionein promoters in fish cells and fry. Biochem. Biophys. Res. Comm. 185:1108–1114.

    Google Scholar 

  15. Peters S., Koh J., and Choi D. W. 1987. Zinc selectivity blocks the action of N-methyl-D-aspartate on cortical neurons. Science 236:589–593.

    Google Scholar 

  16. Koh, J.-Y., and Choi, D. W. 1988. Zinc alters excitatory amino acid neurotoxicity on cortical neurons. J. Neurosci. 8 (6), 2164–2171.

    Google Scholar 

  17. Reynolds I. J., and Miller R. J. 1988. Multiple sites for the regulation of the N-methyl-D-aspartate receptor. Mol. Pharmacol. 33:581–584.

    Google Scholar 

  18. Martinez-Guijarro F. J., Soriano E., Del Rio J. A., Lopez-Garcia C. 1991. Zinc-positive boutons in the cerebral cortex of lizards show glutamate immunoreactivity. J. Neurocytol. 20:834–843.

    Google Scholar 

  19. Legendre P., and Westbrook G. L. 1990. Noncompetitive inhibition of γ-aminobutyric acidA channels by Zn. Mol. Pharmacol. 39:267–274.

    Google Scholar 

  20. Xie, X., and Smart, T. G. 1991. A physiological role for endogenous zinc in rat hippocampal synaptic neurotransmission. Nature (Lond) 349:521–524.

    Google Scholar 

  21. Stengaard-Pedersen, K., Fredens, K., and Larsson, L.-I. 1981. Inhibition of opiate receptor binding by zinc ions: possible physiological importance in the hippocampus. Peptides 1: (Suppl. 1), 27–35.

    Google Scholar 

  22. Walker, J. M., Bowen, W. D., Walker, F. O., Matsumoto, R. R., De Costa, B., and Rice, K. C. 1990. Sigma receptors: biology and function. Pharmacol. Rev. 42:355–402.

    Google Scholar 

  23. Yokoyama, M., Koh, J., and Choi, D. W. 1986. Brief exposure to zinc is toxic to cortical neurons. Neurosci. Lett. 71:351–355.

    Google Scholar 

  24. Ebadi, M. 1991. Metallothionein and other zinc binding proteins in brain. Meth. Enzymol. 205:363–387.

    Google Scholar 

  25. Hao, R., Cerutis, R., Blaxall, H., Rodriguez-Sierra, J. F., Pfeiffer, R. F., and Ebadi, M. 1993. Distribution of metallothionein mRNA in the rat brain using in situ hybridization. FASEB J. 7:4812.

    Google Scholar 

  26. Ebadi M. 1986. Biochemical characterization of a metallothionein-like protein in rat brain. Biol. Trace Element Res. 11:101–116.

    Google Scholar 

  27. Paliwal V. K., Iversen P. L., and Ebadi, M. 1990. Regulation of zinc metallothionein II mRNA level in rat brain. Neurochem.Int. 17:441–447.

    Google Scholar 

  28. Nobel E. P., Wurtman R. J., and Axelrod J. 1967. A simple and rapid method for injecting [3H]norepinephrine into the lateral ventricle of the rat brain. Life Sci. 6:282–291.

    Google Scholar 

  29. Itoh M., Ebadi M., and Swanson S. 1983. The presence of zinc binding protein in brain. J. Neurochem. 41:823–829.

    Google Scholar 

  30. Conin, P. M. 1989. Methods in neurosciences gene probes, vol. 1. Academic Press, Inc.

  31. Durnam D. M., Perrin F., Gannon, F., and Palmiter R. 1980. Isolation and characterization of the mouse metallothionein-I gene. Proc. Natl. Acad. Sci. USA 77:6511–6515.

    Google Scholar 

  32. Andersen R. D., Birren B. W., Ganz T., Piletz J. E., and Herschman H. R. 1983. Molecular cloning of the rat metallothionein I (mTI) mRNA sequence. DNA 2:15–22.

    Google Scholar 

  33. Sambrook J., Fritsch E. F., and Maniates T. 1989. Molecular Cloning: A Laboratory Manual (2nd Ed.), Cold Spring Harbor Laboratory Press, New York, New York.

    Google Scholar 

  34. Ebadi M., and Pfeiffer R. 1984. Zinc in neurological disorders and in experimentally-induced epileptic seizures. Neurobiology 11B:307–324.

    Google Scholar 

  35. Ebadi M., and Hama Y. 1986. Zinc-binding protein in the brain. Adv. Exp. Med. Biol. 203:557–570.

    Google Scholar 

  36. Ebadi, M. 1986. Biochemical characterization of a metallothionein-like protein in rat brain. Biol. Trace Element Res. 11:101–116.

    Google Scholar 

  37. Ebadi M., and Wallwork, J. C. 1985. Zinc binding proteins (ligands) in brains of severely zinc deficient rats. Biol. Trace Element Res. 7:129–139.

    Google Scholar 

  38. Ebadi M. 1986. Biochemical alteration of a metallothionein-like protein in developing rat brain. Biol. Trace Element Res. 11:117–128.

    Google Scholar 

  39. Nishimura N., Nishimura, H., Ghaffer, A., and Tohyama C. 1992. Localization of metallothionein in the brain of rat and mouse. J. Histochem. Cytochem. 40:309–315.

    Google Scholar 

  40. Nakajima, K., Suzuki, K., Otaki, N., and Kimura, M. 1991. Detection of metallothionein in brain. Methods in Enzymol. 205:387–395.

    Google Scholar 

  41. Bremner, J., and Beattie, J. H. 1990. Metallothionein and the trace minerals. Annu. Rev. Nutr. 10:63–83.

    Google Scholar 

  42. Boadi, W. Y., Yannai, S., Urbach, J., Brandes, J. M., and Summer, K. H. 1991. Transfer and accumulation of cadmium, and the level of metallothionein in perfused human placentae. Arch. Toxicol. 65:318–323.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, R., Cerutis, D.R., Blaxall, H.S. et al. Distribution of zinc metallothionein I mRNA in rat brain using in situ hybridization. Neurochem Res 19, 761–767 (1994). https://doi.org/10.1007/BF00967717

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00967717

Key Words

Navigation