Skip to main content
Log in

Mono N-Aryl ethylenediamine and piperazine derivatives are GABAA receptor blockers: Implications for psychiatry

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Ethylenediamine (EDA) and piperazine are known GABA-A receptor agonists and this activity appears to reside in their carbamate adducts. In CO2-free incubation medium EDA and piperazine weakly reverse the inhibitory action of 1 μM GABA on specific, [35S]t-butylbicyclophosphorothionate (35S-TBPS) binding to rat brain membranes in vitro. In 25 mM sodium bicarbonate buffer, EDA and piperazine much more potently inhibit35S-TBPS binding in a way reversible by the GABA-A receptor blocker R5135. Thus, native EDA and piperazine are weak GABA-A receptor blockers, while their presumed carbamate adducts, formed by reaction with bicarbonate, are more potent GABA-A receptor agonists. Virtually all structural modifications of EDA or piperazine result in GABA-A receptor blockers, even in the presence of bicarbonate, judging from their abilities to fully or partially reverse the inhibitory effect of GABA on35S-TBPS binding. Of 12 non-aromatic piperazine or EDA derivatives, the piperazine derivatives are the more potent GABA antagonists, although all are weak compared to the mono N-aryl derivatives. Nineteen mono N-aryl EDA derivatives are moderately potent GABA antagonists, including 10 with demonstrated or potential antidepressant activity. Most of the N-aryl piperazines are moderately to highly potent GABA antagonists one (pitrazepin) being 4 to 5 times more potent than bicuculline. There are several clinically effective antidepressants (e.g. Amoxapine, Mianserine) and antipsychotics (Clothiapine, Loxapine, Metiapine, Clozapine and Fluperlapine) among the more potent N-aryl piperazine GABA antagonists. We suggest that the antidepressant and antipsychotic effects, as well as the convulsions, anxiety, panic attacks and insomnia caused by the much studied 1-(m-chlorophenyl-piperazine) may be due to GABA-A receptor blockade. It might be worthwhile to clinically test additional N-aryl piperazines and N-aryl EDAs for antidepressant/antipsychotic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Squires, R. F., Casida, J. E., Richardson, M., and Saederup, E. 1983. [35S]t-Butylbicyclophosphorothionate binds with high affinity to brain-specific sites coupled to γ-aminobutyric acid-A and ion recognition sites. Mol. Pharmacol. 23:326–336.

    PubMed  Google Scholar 

  2. Squires, R. F., and Saederup, E. 1987. GABAA receptor blockers reverse the inhibitory effect of GABA on brain-specific [35S]TBPS binding. Brain Res. 414:357–364.

    PubMed  Google Scholar 

  3. Squires, R. F., and Saederup, E. 1988. Antidepressants and metabolites that block GABAA receptors coupled to [35S]t-butylbicyclophosphorothionate binding sites in rat brain. Brain Res. 441:15–22.

    PubMed  Google Scholar 

  4. Squires, R. F., and Saederup, E. 1991. A review of evidence for GABergic predominance/glutamatergic deficit as a common etiological factor in both schizophrenia and affective psychoses: more support for a continuum hypothesis of “functional” psychosis. Neurochem. Res. 16:1099–1111.

    PubMed  Google Scholar 

  5. Dalkara, T., Saederup, E., Squires, R. F., and Krnjevic, K. 1986. Iontophoretic studies on rat hippocampus with some novel GABA antagonists. Life Sci. 39:415–422.

    PubMed  Google Scholar 

  6. Perkins, M. N., and Stone, T. W., 1981. An ionophoretic study of the structure activity relationships between analogues and derivative of ethylenediamine. Brit. J. Pharmacol. 74:887P.

    Google Scholar 

  7. Perkins, M. N., Bowery, N. G., Hill, D. R., and Stone, T. W. 1981. Neuronal responses to ethylenediamine: preferential blockade by bicuculline. Neurosci. Lett. 23:325–327.

    PubMed  Google Scholar 

  8. Hill, D. R. 1983. The GABA-mimetic activity of ethylenediamine is dependent upon physiological concentrations of HCO 3 ions. Br. J. Pharmacol. 79:268P.

    Google Scholar 

  9. Stone, T. W., and Perkins, M. N. 1984. Ethylenediamine as a GABA-mimetic. TIPS: 5:241–243.

    Google Scholar 

  10. Rollo, I. M. 1965. Drugs used in the chemotherapy of helminthiasis. Pages 1058–1086 in: Goodman and Gilman (eds.) 3rd edition, Pharmacological Basis of Therapeutics. Macmillan, New York.

    Google Scholar 

  11. Martin, R. J. 1982. Electrophysiological effects of piperazine and diethyl-carbamazine on Ascaris suum somatic muscle. Br. J. Pharmacol. 77:255–265.

    PubMed  Google Scholar 

  12. Shinozaki, H., and Konishi, S. 1970. Actions of several anthelmintics and insecticides on rat cortical neurones. Brain Res. 24:368–371.

    PubMed  Google Scholar 

  13. Constanti, A., and Nistri, A. 1976. A comparative study of the action of γ-aminobutyric acid and piperazine on the lobster muscle fibre and the frog spinal cord. Br. J. Pharmacol. 57:347–358.

    PubMed  Google Scholar 

  14. Parsons, A. C. 1971. Piperazine neurotoxicity: “Worm Wobble” Br. Med. J. 4:792.

    PubMed  Google Scholar 

  15. Squires, R. F., and Saederup, E. 1984. GABA antagonists, antidepressants, central stimulants and other substances reverse the inhibitory effect of GABA on the binding of TBPS to brain specific sites. Soc. Neurochem. Abstr. 10:388.

    Google Scholar 

  16. Luscombe, G., Jenner, P., and Marsden, C. D. 1982. Myoclonus in guinea pigs is induced by indole-containing but not piperazine-containing 5HT agonists. Life Sci. 30:1487–1494.

    PubMed  Google Scholar 

  17. Whitton, P., and Curzon, G. 1990. Anxiogenic-like effect of infusing 1-(3-chlorophenyl) piperazine (mCPP) into the hippocampus. Psychopharmacol. 100:138–140.

    Google Scholar 

  18. Kahn, R. S., and Wetzler, S. 1991.m-chlorophenylpiperazine as a probe of serotonin function. Biol. Psychiat. 30:1139–1166.

    PubMed  Google Scholar 

  19. Murphy, D. L., Mueller, E. A., Hill, J. L., Tolliver, T. J., and Jacobsen, F. M. 1989. Comparative anxiogenic, neuroendocrine, and other physiologic effects ofm-chlorophenylpiperazine, given intravenously or orally to healthy volunteers. Psychopharmacol. 98:275–282.

    Google Scholar 

  20. Kalus, O., Kahn, R. S., Wetzler, S., Asnis, G. M., and van Praag, H. M. 1990. Hypersensitivity tom-chlorophenylpiperazine in a subject with subclinical panic attacks. Biol. Psychiat. 28:1053–1057.

    PubMed  Google Scholar 

  21. Pigott, T. A., Zohar, J., Hill, J. L., Bernstein, S. E., Grover, G. N., Zohar-Kadouch, R. C., and Murphy, D. L., 1991. Metergoline blocks the behavioral and neuroendocrine effects of orally administeredm-chlorophenylpiperazine in patients with obsessive-compulsive disorder. Biol. Psychiat. 29:418–426.

    PubMed  Google Scholar 

  22. Kahn, R. S., Wetzler, S., Asnis, G. M., Kling, M. A., Suckow, R. F., and van Praag, H. M. 1990. Effects ofm-chlorophenyl-piperazine in normal subjects: a dose-response study. Psychopharmacol. 100:339–344.

    Google Scholar 

  23. Lawlor, B. A., Newhouse, P. A., Balkin, T. J., Molchan, S. E., Mellow, A. M., Murphy, D. L., and Sunderland, T. 1991. A preliminary study of the effects of nighttime administration of the serotonin agonist,m-CPP, on sleep architecture and behavior in healthy volunteers. Biol. Psychiat. 29:281–286.

    PubMed  Google Scholar 

  24. Mellow, A. M., Lawlor, B. A., Sunderland, T., Mueller, E. A., Molchan, S. E., and Murphy D. L. 1990. Effects of daily oralm-chlorophenylpiperazine in elderly depressed patients. Initial experience with a serotonin agonist. Biol. Psychiat. 28:588–594.

    PubMed  Google Scholar 

  25. Kahn, R. S., Siever, L. J., Gabriel, S., Amin, F., Stern, R. G., DuMont, K., Apter, S., and Davidson, M. 1992. Serotonin function in schizophrenia: effects of metachlorophenylpiperazine in schizophrenic patients and healthy subjects. Psychiat. Res. 43:1–12.

    Google Scholar 

  26. Levitan, E. S., Schofield, P. R., Burt, D. R., Rhee, L. M., Wisden, W., Köhler, M., Fujita, N., Rodriguez, H. F., Stephenson, A., Darlison, M. G., Barnard, E. A., and Seeburg, P. H. 1988. Structural and functional basis for GABAA receptor heterogeneity. Nature 335:76–79.

    PubMed  Google Scholar 

  27. Pritchett, D. B., Sontheimer, H., Shivers, B. D., Ymer, S., Kettenmann, H., Schofield, P. R., and Seeburg, P. H. 1989. Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature 338:582–585.

    PubMed  Google Scholar 

  28. Pritchett, D. B., Lüddens, H., and Seeburg, P. H. 1989. Type I and type II GABAA-benzodiazepine receptors produced in transfected cells. Science 245:1389–1392.

    PubMed  Google Scholar 

  29. Lüddens, H., Pritchett, D. B.,. Köhler, M., Killisch, I., Keinänen, K., Monyer, H., Sprengel, R., and Seeburg, P. H. 1990. Cerebellar GABAA receptor selective for a behavioural alcohol antagonist. Nature 346:648–651.

    PubMed  Google Scholar 

  30. Puia, G., Vicini, S., Seeburg, P. H., and Costa, E. 1991. Influence of recombinant γ-aminobutyric acid-A receptor subunit composition on the action of allosteric modulators of γ-aminobutyric acid-gated Cl currents. Mol. Pharmacol. 39:691–696.

    PubMed  Google Scholar 

  31. Wisden, W., Laurie, D. J., Monyer, H., and Seeburg, P. H. 1992. The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. J. Neurosci. 12:1040–1062.

    PubMed  Google Scholar 

  32. Laurie, D. J., Seeburg, P. H., and Wisden, W. 1992. The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. II. Olfactory bulb and cerebellum. J. Neurosci. 12:1063–1076.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Squires, R.F., Saederup, E. Mono N-Aryl ethylenediamine and piperazine derivatives are GABAA receptor blockers: Implications for psychiatry. Neurochem Res 18, 787–793 (1993). https://doi.org/10.1007/BF00966774

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00966774

Key Words

Navigation