Skip to main content
Log in

Pharmacology of insect GABA receptors

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

A GABA-operated Cl channel that is bicuculline-insensitive is abundant in the nervous tissue of cockroach, in housefly head preparations and thorax/abdomen preparations, and in similar preparations from several insect species. Bicuculline-insensitive GABA-operated Cl channels, which are rare in vertebrates, possess sites of action of benzodiazepines, steroids and insecticides that are pharmacologically-distinct from corresponding sites on vertebrate GABAA receptors. The pharmacological profile of the benzodiazepine-binding site linked to an insect CNS GABA-operated Cl channel resembles more closely that of vertebrate peripheral benzodiazepine-binding sites. Six pregnane steroids and certain polychlorocycloalkane insecticides, which are active att-butylbicy-clophosphorothionate (TBPS)-binding sites, also differ in their effectiveness on vertebrate and insect GABA receptors. Radioligand binding and physiological studies indicate that in insects there may be subtypes of the GABA receptor. Molecular biology offers experimental approaches to understanding the basis of this diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roberts, E., and Frankel, S. 1949. Free amino acids in normal and neoplastic tissues of mice as studied by paper chromatography. Cancer Res. 9:654–658.

    Google Scholar 

  2. Roberts, E., and Frankel, S. 1950. γ-Aminobutyric acid in brain: Its formation from glutamic acid. J. Biol. Chem. 187:55–63.

    PubMed  Google Scholar 

  3. Gerschenfeld, H. M. 1973. Chemical transmission in invertebrate central nervous systems and neuromuscular junctions. Physiol. Rev. 53:1–119.

    PubMed  Google Scholar 

  4. Bazemore, A. K., Elliott, A. C., and Florey, E. 1957. Isolation of factor I. J. Neurochem. 1:334–339.

    Google Scholar 

  5. Takeuchi, A. 1976. Studies of the inhibitory effects of GABA in invertebrate nervous systems. Pages 255–267, in Roberts, E., Chase, T. N., and Tower, D. B. (eds.), GABA in Nervous System Function, Raven Press, New York.

    Google Scholar 

  6. Kravitz, E. A., Molinoff, P. B., and Hall, Z. W. 1965. A comparison of the enzymes and substrates of γ-aminobutyric acid metabolism in lobster excitatory and inhibitory axons. Proc. Natl. Acad. Sci. USA. 54:778–782.

    PubMed  Google Scholar 

  7. Kravitz, E. A., Iversen, L. L., Otsuka, M., and Hall, Z. W., 1968. Gamma-aminobutyric acid in the lobster nervous system: Release from inhibitory nerves and uptake into nerve-muscle preparations. Pages 371–376, in von Euler, C., Skoglund, S., and Soderberg, U. (eds.), Structure and Function of Inhibitory Neuronal Mechanisms, Pergamon Press, Oxford.

    Google Scholar 

  8. Hill, D. R., and Bowery, N. G. 1981.3H-baclofen and3H-GABA binding to bicuculline-insensitive GABA sites in rat brain. Nature. 290:149–152.

    PubMed  Google Scholar 

  9. Stephenson, F. A. 1988. Understanding the GABAA receptor: A chemically gated ion channel. Biochem. J. 249:21–32.

    PubMed  Google Scholar 

  10. Olsen, R. W., and Tobin, A. J. 1990. Molecular biology of GABAA receptors. FASEB J. 4:1469–1480.

    PubMed  Google Scholar 

  11. Enna, S. J., and Snyder, S. H. 1975. Properties of γ-aminobutyric acid (GABA) receptor binding in rat brain synaptic fractions. Brain Res. 100:81–97.

    PubMed  Google Scholar 

  12. Enna, S. J., and Snyder, S. H. 1977. Influences of ions, enzymes and detergents on γ-aminobutyric acid receptor binding in synaptic membranes of rat brain. Mol. Pharmacol. 13:442–453.

    PubMed  Google Scholar 

  13. Krogsgaard-Larsen, P., Snowman, A., Lummis, S. C. R., and Olsen, R. W. 1981. Characteristics of the binding of the GABA agonist3H-piperidine sulphonic acid to bovine brain synaptic membranes. J. Neurochem. 37:401–409.

    PubMed  Google Scholar 

  14. Falch, E., and Krogsgaard-Larsen, P. 1982. The binding of the GABA agonist3H-THIP to rat brain synaptic membranes. J. Neurochem. 38:1123–1129.

    PubMed  Google Scholar 

  15. Barnard, E. A., Darlison, M. G., Marshall, J., and Sattelle, D. B. 1989. Structural characteristics of cation and anion channels directly operated by agonists. Pages 159–182, in Keeling, D., and Benham, C. (eds.), Ion Transport, Academic Press, London.

    Google Scholar 

  16. Levitan, E. S., Schofield, P. R., Burt, D. R., Rhee, L. M., Wisden, W., Kohler, M., Fujita, N., Rodriguez, M. F., Stephenson, A., Darlison, M. G., Barnard, E. A., and Seeburg, P. H. 1988. Structural and functional basis for GABAA receptor heterogeneity. Nature (Lond.) 335:76–79.

    Google Scholar 

  17. Pritchett, D. B., Sontheimer, H., Shivers, B., Ymer, S., Kettenmann, H., Schofield, P. R., and Seeburg, P. 1989. Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature (Lond.) 338:582–585.

    Google Scholar 

  18. Sattelle, D. B. 1990. GABA receptors of insects. Adv. Insect Physiol. 22:1–113.

    Google Scholar 

  19. Lummis, S. C. R. 1990. GABA receptors in insects. Comp. Biochem. Physiol. 95C:1–8.

    Google Scholar 

  20. Rauh, J. J., Lummis, S. C. R., and Sattelle, D. B. 1990. Pharmacological and biochemical properties of insect GABA receptors. TIPS 11:325–329.

    PubMed  Google Scholar 

  21. Wafford, K. A., Sattelle, D. B., Abalis, I., Eldefrawi, A. T., and Eldefrawi, M. E. 1987. γ-Aminobutyric acid-activated36Cl influx: A functional in vitro assay for CNS γ-aminobutyric acid receptors of insects. J. Neurochem. 48:177–180.

    PubMed  Google Scholar 

  22. Watson, A. H. D., and Burrows, M. 1987. Immunocytochemical and pharmacological evidence for GABAergic nonspiking local interneurones in the locust. J. Neurosci. 7:1741–1761.

    PubMed  Google Scholar 

  23. Wafford, K. A., and Sattelle, D. B. 1986. Effects of amino acid neurotransmitter candidates on an identified insect motoneurone. Neurosci. Lett. 63:135–140.

    PubMed  Google Scholar 

  24. Sattelle, D. B., Pinnock, R. D., Wafford, K. A., and David, J. A. 1988. GABA receptors on the cell-body membrane of an identified insect motor neuron. Proc. R. Soc. Lond. B. 232:443–456.

    PubMed  Google Scholar 

  25. Beadle, D. J., and Lees, G. 1986. Insect neuronal cultures—a new tool in insect neuropharmacology. Pages 423–44, in Ford, M. G., Lunt, G. G., Reay, R. C., and Usherwood, P. N. R. (eds.), Neuropharmacology and Pesticide Action, Ellis Horwood Ltd., Cheshire, UK, and VCH, Weinheim, FRG.

    Google Scholar 

  26. Benson, J. A. 1988. Bicuculline blocks the response to acetylcholine and nicotine but not to muscarine or GABA in isolated insect neuronal somata. Brain Res. 458:65–71.

    PubMed  Google Scholar 

  27. Usherwood, P. N. R., and Grundfest, H. 1965. Peripheral inhibition in skeletal muscle of insects. J. Neurophysiol. 28:497–518.

    PubMed  Google Scholar 

  28. Usherwood, P. N. R. 1973. Action of iontophoretically applied γ-amino butyric acid on locust muscle fibres. Comp. Biochem. Physiol. 44A:663–664.

    Google Scholar 

  29. Brookes, N., and Werman, R. 1973. The co-operativity of γ-aminobutyric acid action on the membrane of locust muscle fibres. Mol. Pharmacol. 9:571–579.

    PubMed  Google Scholar 

  30. Cull-Candy, S. G. 1982. Properties of postsynaptic channels activated by glutamate and GABA in locust muscle fibres. Pages 70–82, in Evered, D., O'Connor, M., and Whelan, J. (eds.), Neuropharmacology of Insects, Ciba Foundation Symposium 88, Pitman, London.

    Google Scholar 

  31. Cull-Candy, S. G., and Miledi, R. 1981. Junctional and extrajunctional membrane channels activated by GABA in locust muscle fibres. Proc. R. Soc. (Lond.) B. 211:527–535.

    Google Scholar 

  32. Scott, R. H., and Duce, I. D. 1987. Pharmacology of GABA receptors on skeletal muscle fibres of the locust Schistocerca gregaria. Comp. Biochem. Physiol. 86C:305–311.

    Google Scholar 

  33. Guidotti, A., Toffano, G., and Costa, E. 1978. An endogenous protein modulates the affinity of GABA and benzodiazepine receptors in rat brain. Nature (Lond.) 257:553–555.

    Google Scholar 

  34. Napias, C., Bergman, M. O., van Ness, P. C., Greenlee, D. V., and Olsen, R. W. 1980. GABA binding in mammalian brain: Inhibition by endogenous GABA. Life Sci. 27:1001–1011.

    PubMed  Google Scholar 

  35. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  36. Pitman, R. M., and Kerkut, G. A. 1970. Comparison of the actions of iontophoretically applied acetylcholine and gamma aminobutyric acid with the EPSP and IPSP in cockroach central neurons. Comp. gen. Pharmacol. 1:221–230.

    PubMed  Google Scholar 

  37. Lane, N. J. 1985. Structure of components of the nervous system. Pages 1–47, in Kerkut, G. A., and Gilbert, L. I. (eds.), Comprehensive Insect Physiology Biochemistry and Pharmacology, Vol. 5, Pergamon Press, New York.

    Google Scholar 

  38. Waldrop, B., Christensen, T. A., and Hildebrand, J. G. 1987. GABA-mediated synaptic inhibition of projection neurons in the antennal lobes of the sphinx moth Manduca sexta. J. Comp. Physiol. A. 161:23–32.

    PubMed  Google Scholar 

  39. Neumann, R., Lees, G., Beadle, D. J., and Benson, J. A. 1987. Response to GABA and other neurotransmitters in insect central neuronal somata in vitro. Pages 25–43, in Hollingworth, R. M., and Green, M. B. (eds.), Sites of Action and Neurotoxic Pesticides, ACS Symposium Series 356, American Chemical Society, Washington DC.

    Google Scholar 

  40. Shimahara, T., Pichon, Y., Lees, G., Beadle, C. A., and Beadle, D. J. 1987. γ-Aminobutyric acid receptors on cultured cockroach brain neurones. J. exp. Biol. 131:231–244.

    Google Scholar 

  41. Lummis, S. C. R., and Sattelle, D. B. 1986. Binding sites for [3H]GABA, [3H]flunitrazepam and [35S]TBPS in insect CNS. Neurochem. Int. 9:287–293.

    Google Scholar 

  42. Robinson, T., MacAllan, D., Lunt, G. G., and Battersby, M. 1986. γ-Aminobutyric acid receptor complex of insect CNS: Characterization of a benzodiazepine binding site. J. Neurochem. 47:1955–1962.

    PubMed  Google Scholar 

  43. Turner, D. M., Ransom, R. W., Yang, S.-J., and Olsen, R. W. 1989. Steroid anaesthetics and naturally occurring analogs modulate the γ-aminobutyric acid receptor complex at a site distinct from barbiturates. J. Pharmacol. exp. Ther. 248:960–966.

    PubMed  Google Scholar 

  44. Rauh, J. J., Buckingham, S. D., Lummis, S. C. R., and Sattelle, D. B. 1991. Steroids reveal differences between GABA-operated chloride channels of insects and vertebrates.Mol. Neuropharmacol. (submitted).

  45. Matsumura, F., Tanaka, K., and Ozoe, Y. 1987. GABA related systems as targets for insecticides. Pages 44–70, in Hollingworth, R. M., and Green, M. B. (eds.), Sites of Action for Neurotoxic Pesticides, ACS Symposium Series 356, American Chemical Society, Washington DC.

    Google Scholar 

  46. Eldefrawi, M. E., and Eldefrawi, A. T. 1988. Action of toxicants on GABAA and glutamate receptors. Pages 207–221, in Lunt, G. G. (ed.), Neurotox '88: Molecular Basis of Drug and Pesticide Action, Elsevier Science Publishers BV (Biomedical Division). Amsterdam.

    Google Scholar 

  47. Tanaka, K., Scott, J. G., and Matsumura, F. 1984. Picrotoxin receptor in the central nervous system of the american cockroach: Its role in the action of cyclodiene insecticides. Pestic. Biochem. Physiol. 22:117–127.

    Google Scholar 

  48. Ozoe, Y., Mochida, K., Nakamura, T., Yoyama, A., and Matsumura, F. 1987. Actions of benzodiazepines on the housefly: Binding to thorax/abdomen extracts and biological effects. Comp. Biochem. Physiol. 87C:187–191.

    Google Scholar 

  49. Wafford, K. A., Lummis, S. C. R., and Sattelle, D. B. 1989. Block of an insect central nervous system GABA receptor by cyclodiene and cyclohexane insecticides. Proc. R. Soc. (Lond.) B. 23:53–61.

    Google Scholar 

  50. Wright, D. J. 1986. Biological activity and mode of action of avermectins. Pages 174–202, in Ford, M. G., Lunt, G. G., Reay, R. C., and Usherwood, P. N. R. (eds.), Neuropharmacology & Pesticide Action, Ellis Horwood Ltd., Cheshire, UK and VCH, Weinheim, FRG.

    Google Scholar 

  51. Sattelle, D. B., and Yamamoto, D. 1988. Molecular targets of pyrethroid insecticides. Adv. Insect Physiol. 20:147–222.

    Google Scholar 

  52. Cohen, E., and Casida, J. E. 1986. Chlorocyclohexane insecticides and male medfly attractants: Similar stereospecificity for neuroactivity and interactions with a housefly [35S]-t-butylbicyclophosphorothionate binding site. Life Sci. 36:1837–1842.

    Google Scholar 

  53. Szamraj, O. I., Miller, T., and Olsen, R. W. 1986. Cage convulsant [35S]TBPS binding to GABA receptor-chloride channel complex in invertebrate tissue. Soc. Neurosci. Abstr. 16:656.

    Google Scholar 

  54. Olsen, R. W., Szamraj, O., and Miller, T. 1989. [35S]-t-Butylbicyclophosphorothionate binding sites in invertebrate tissues. J. Neurochem. 52:1311–1318.

    PubMed  Google Scholar 

  55. Sattelle, D. B., Schroeder, M. E., Cordova, D., and Pinnock, R. D. 1991. Interactions of barbiturates, TBPS and avermectins with the GABA receptor of an identified insect motor neurone. Neuropharmacol. (submitted).

  56. Holden-Dye, L., Hewitt, G. M., Wann, K. T., Krogsgaard-Larsen, P., and Walker, R. J. 1988. Studies involving avermectin and the 4-aminobutyric acid (GABA) receptor of Ascaris suum muscle. Pestic. Sci. 24:231–245.

    Google Scholar 

  57. Claudio, T. 1989. Molecular genetics of acetylcholine receptor channels. Pages 63–142, in Glover, D. M. and Hames, B. D. (eds.), Molecular Neurobiology, IRL, Oxford University Press, U.K.

    Google Scholar 

  58. Noda, M., Shimizu, S., Tanaka, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, Y., Minamino, N., Kangawa, K., Matsuo, H., Raftery, M. A., Hirose, T., Inayama, S., Hayashida, H., Miyata, T., and Numa, S. 1984. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature (Lond.) 312:121–127.

    Google Scholar 

  59. Hermans-Borgmeyer, I., Zopf, D., Ryseck, R. P., Hovemann, B., Betz, H., and Gundelfinger, E. D. 1986. Primary structure of a developmentally regulated nicotinic acetylcholine receptor protein from Drosophila. EMBO J. 5:1503–1508.

    Google Scholar 

  60. Bossy, B., Ballivet, M., Spierer, P. 1988. Conservation of neural nicotinic acetylcholine receptors from Drosophila to vertebrate central nervous system. EMBO J. 7:611–618.

    PubMed  Google Scholar 

  61. Marshall, J., David, J. A., Darlison, M. G., Barnard, E. A., and Sattelle, D. B. 1988. Pharmacology, cloning and expression of insect nicotinic acetylcholine receptors. Pages 257–281, in Clementi, F., Gotti, C., and Sher, E. (eds.), Nicotinic Acetylcholine Receptors in the Nervous System, Springer-Verlag, Berlin.

    Google Scholar 

  62. Marshall, J., Buckingham, S. D., Shingai, R., Goosey, M., Darlison, M. G., Sattelle, D. B., and Barnard, E. A. 1990. Cloning and expression of a single subunit of the locust nicotinic acetylcholine receptor. EMBO J. 9:4391–4398.

    PubMed  Google Scholar 

  63. Papazian, D. M., Schwarz, T. L., Temple, B. L., Jan, Y. N., and Jan, L. N. 1987. Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science. 237:749–753.

    PubMed  Google Scholar 

  64. Loughney, K., Kreber, R., and Ganetzky, B. 1989. Molecular analysis of the para locus, a sodium channel gene in Drosophila. Cell. 58:1143–1154.

    PubMed  Google Scholar 

  65. Frech, G. C., van Dongen, A. M. J., Schuster, G., Brown, A. M., and Joho, R. H. 1989. A novel potassium channel with delayed rectifier properties isolated from rat brain by expression cloning. Nature (Lond.) 340:642–645.

    Google Scholar 

  66. Gundelfinger, E. D., Hermans-Borgmeyer, I., Schloss, P., Sawruck, E., Udri, C., Vingron, M., Betz, H., and Schmitt, B. 1989. Ligandgated ion channels of Drosophila. Pages 69–81, in Maclicke, A. (ed.), Molecular Biology of Neuroreceptors and Ion Channels, NATO ASI Series, Vol. H32, Springer-Verlag, Berlin.

    Google Scholar 

  67. Schofield, P. R., Darlison, M. G., Fujita, N., Burt, D. R., Stephenson, F. A., Rodriguez, H., Rhee, L. M., Ramachandran, J., Reale, V., Glencose, T. A., Seeburg, P. H., Barnard, E. A. 1987. Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor superfamily. Nature. 328:221–227.

    PubMed  Google Scholar 

  68. Lummis, S. C. R., and Sattelle, D. B. 1985. Insect central nervous system γ-aminobutyric acid receptors. Neurosci. Lett. 60:13–18.

    PubMed  Google Scholar 

  69. Breer, H., and Heilgenberg, H. 1985. Neurochemistry of GABAergic activities in the central nervous system of Locusta migratoria. J. Comp. Physiol. A. 157:343–354.

    Google Scholar 

  70. Rutherford, D. M., Jeffery, D., Lunt, G. G., and Weitzman, P. D. J. 1987. GABA binding to receptor sites in locust supraoesophageal ganglion. Neurosci. Lett. 79:337–340.

    PubMed  Google Scholar 

  71. Robinson, T. 1986. Ph.D. Thesis, University of Bath, UK.

  72. Abalis, I. M., and Eldefrawi, A. T. 1986. [3H]Muscimol binding to a putative GABA receptor in honey bee brain and its interaction with avermectin B1a. Pestic. Biochem. Physiol. 25:279–287.

    Google Scholar 

  73. Lunt, G. G., Robinson, T. N., Miller, T., Knowles, W. P., and Olsen, R. W. 1985. The identification of GABA receptor binding sites in insect ganglia. Neurochem. Int. 7:751–754.

    Google Scholar 

  74. Robinson, T. N., and Olsen, R. W. 1988. GABA. Pages 90–123, in Lunt, G. G. (ed.), Comparative Invertebrate Neurochemistry, Croom Helm, London and Sydney.

    Google Scholar 

  75. Abalis, I. M., Eldefrawi, M. E., and Eldefrawi, A. T. 1983. Biochemical identification of putative GABA/benzodiazepine receptors in house fly thorax muscles. Pestic. Biochem. Physiol. 20:39–48.

    Google Scholar 

  76. Brown, M. C., Lunt, G. G., and Stapleton, A. (1989). Further characterisation of the binding site for [35S]-TBPS in locust ganglia membranes. Comp. Biochem. Physiol. 92C:9–13.

    Google Scholar 

  77. Schaeffer, J. M., and Bergstrom, A. R. 1988. Identification of gamma-aminobutyric acid and its binding sites in Caenorhabditis elegans. Life Sci. 43:1701–1706.

    PubMed  Google Scholar 

  78. Bowery, N. G. 1983. Classification of GABA receptors. Pages 173–213, in Enna, S. J. (ed.), The GABA Receptors, Humana Press, Clifton, New Jersey.

    Google Scholar 

  79. Krogsgaard-Larsen, P., and Falch, E. 1981. GABA agonists: Development and interactions with the GABA receptor complex. Mol. Cell Biochem. 38:129–146.

    PubMed  Google Scholar 

  80. Callec, J. J. 1974. Synaptic transmission in the central nervous system of insects. Pages 119–185, in Treherne, J. E. (ed.), Insect Neurobiology, North Holland, Amsterdam and New York.

    Google Scholar 

  81. Buckingham, S. D., Hue, B., and Sattelle, D. B. 1991. Actions of bicuculline on cell body and neuropile membranes of identified insect neurones. J. exp. Biol. (in press).

  82. Goodman, C. S., and Spitzer, N. C. 1980. Embryonic development of neurotransmitter receptors in grasshoppers. Pages 195–209, in Sattelle, D. B., Hall, L. M., and Hildebrand, J. G. (eds.), Receptors for Neurotransmitters, Hormones and Pheromones in Insects, Elsevier/North-Holland, Amsterdam.

    Google Scholar 

  83. Speth, R. C., Wastek, G. J., Johnson, P. C., and Yamamura, H. I. 1978. Life Sci. 22:859–866.

    PubMed  Google Scholar 

  84. Regan, J. W., Yamamura, H. I., Yamada, S., and Roeske, W. R. 1981. Life Sci. 28:991–998.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Eugene Roberts

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sattelle, D.B., Lummis, S.C.R., Wong, J.F.H. et al. Pharmacology of insect GABA receptors. Neurochem Res 16, 363–374 (1991). https://doi.org/10.1007/BF00966100

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00966100

Key Words

Navigation