Skip to main content
Log in

Characterization of kappa1 and kappa2 opioid binding sites in frog (rana esculenta) brain membrane preparation

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The distribution and properties of frog brain kappa-opioid receptor subtypes differ not only from those of the guinea pig brain, but also from that of the rat brain. In guinea pig cerebellum the kappa1 is the dominat receptor subtype, frog brain contains mainly the kappa2 subtype, and the distribution of the rat brain subtypes is intermediate between the two others. In competition experiments it has been established that ethylketocyclazocine and N-cyclopropylmethyl-norazidomorphine, which are nonselective kappa-ligands, have relatively high affinities to frog brain membranes. The kappa2 ligands (Met5)enkephalin-Arg6-Phe7 and etorphine also show high affinities to the frog brain. Kappa1 binding sites measured in the presence of 5 μM /D-Ala2-Leu5/enkephalin represent 25–30% of [3H]ethylketocyclazocine binding in frog brain membranes. The kappa2 subtype in frog brain resembles more to the mu subtype than the delta subtype of opioid receptors, but it differs from the mu subtype in displaying low affinity toward beta-endorphin and /D-Ala2-(Me)Phe4-Gly5-ol/enkephalin (DAGO). From our data it is evident that the opioid receptor subtypes are already present in the amphibian brain but the differences among them are less pronounced than in mammalian brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

DAGO:

/D-Ala2-(Me)Phe4-Gly5-ol/enkephalin

DALE:

/D-Ala2-L-Leu5/-enkephalin

EKC:

ethylketocyclazocine

DHM:

dihydromorphine

CAM:

N-cyclopropylmethylnorazidomorphine

nor-BNI:

nor-binaltorphimine

MR2034:

(-)-(1R,5R,9R)-5, 9-dimethyl-2 (L-tetrahydrofuryl-2'-hydroxy-6,7benzomorphan)

MR2035:

(+)-(1R,5R,9R)-5,9-dimethyl-2 (L-tetrahydrofuryl-2'-hydroxy-6,7-benzomorphan), U50488H=3,4-dichloro-N-/2-(1-pyrrolidinyl) —cyclohexo/-benzene-acetamide

PD117302:

trans-N-methyl-N-/2-(1-pyrrolidinyl) — cyclohexyl/-benzo (b) thiophene-4-acetamide

References

  1. Simon, E. J., Hiller, J. M., Groth, J., Itzhak, Y, Holland, M. J., and Beck, S. G. (1982). The nature of opiate receptors in toad brains. Life Sci. 31:1367–1370.

    Google Scholar 

  2. Ruegg, U. G., Cuenod, S., Hiller, J. M., Gioannini, T., Howells, R. D., and Simon, E. J. (1981). Characterization and partial purification of solubilized active opiate receptors from toad brain. Proc. Natl. Acad. Sci. USA 78:4635–4638.

    Google Scholar 

  3. Zawilska, J., Lajtha, A., and Borsodi, A. (1988). Selective protection of benzomorphan binding sites against inactivation by N-ethylmaleimide. Evidence for kappa-opioid receptors in frog brain. J. Neurochem. 51:736–739.

    Google Scholar 

  4. Simon, J., Szucs, M., Benyhe, S., Borsodi, A., Zeman, P., and Wollemann, M. (1984). Solubilization and characterization of opioid binding sites from frog brain (Rana esculenta) brain. J. Neurochem. 43:957–963.

    Google Scholar 

  5. Simon, J., Benyhe, S., Borsodi, A., Szucs, M., and Wollemann, M. (1985). Separation of kappa-opioid subtype from frog brain. FEBS Lett. 183:395–397.

    Google Scholar 

  6. Benyhe, S., Simon, J., Borsodi, A., Szucs, M., and Wollemann, M. (1987). Multiple opioid receptors in the frog (Rana esculenta) nervous system. Neuroscience 22:Suppl. S88.

    Google Scholar 

  7. Benyhe, S., Farkas, T., and Wollemann, M. (1989). Effect of sodium on [3H]ethylketocyclazocine binding to opioid receptors in frog brain membrane. Neurochem. Res. 14:205–210.

    Google Scholar 

  8. Puget, A., Frances, B., Jauzac, Ph., and Meunier, J. C. (1984). Solubilization of two molecular forms of the frog brain opioid receptor. Neuropeptides 5:129–132.

    Google Scholar 

  9. Mollereau, C., Pascaud, A., Baillat, G., Mazurguil, H., Puget, A., and Meunier, J.-Cl. (1988). Evidence for a new type of opioid binding site in the brain of the frog Rana ridibunda. Eur. J. Pharmacol. 150:75–84.

    Google Scholar 

  10. Benyhe, S., Hoffmann, Gy., Varga, E., Hosztafi, S., Toth, G., Borsodi, A., and Wollemann, M. (1989). Effects of oxymorphazone in frogs: long lasting antinociception in vivo, and apparently irreversible binding in vitro. Life Sci. 44:1847–1857.

    Google Scholar 

  11. Attali, B., Gouarderes, C., Mazurguil, H., Audigier, Y., and Cros, J. (1982). Evidence for multiple kappa binding sites by use of opioid peptides in the guinea-pig lumbo-sacral spinal cord. Neuropeptides 3:53–64.

    Google Scholar 

  12. Pfeiffer, A., Pasi, A., Mahraein, P., and Herz, A. (1981). A subclassification of kappa-sites in human brain by use of dynorphin 1–17. Neuropeptides 2:89–97.

    Google Scholar 

  13. Hughes, J. (1988). The dynorphin (kappa opioid) receptor. In: Regulatory roles of opioid peptides. VCH Verlagsgesellschaft mbH, Weinheim, FRG, eds.: P. Illes and C. Farsang, pp. 120–130.

    Google Scholar 

  14. Zukin, R. S., Eghbali, M., Olive, D., Unterwald, E., and Tempel, A. (1988). Characterization and visualization of rat and guinea pig brain kappa opioid receptors: Evidence for k1 and k2 receptors. Proc. Natl. Acad. Sci. USA 85:4061–4065.

    Google Scholar 

  15. Toth, G., Kramer, M., Sirokman, F., Borsodi, A., and Ronai, A. (1982). Preparation of (7,8,19,20-3H)-naloxone of high specific activity. J. Label. Comp. Radiopharm. 19:1021–1030.

    Google Scholar 

  16. Toth, G., Kramer, M., Szucs, M., Benyhe, S., and Sirokman, F. (1982). Preparation of 1,7,8,-[3H]dihydromorphine of high molar activity and its application in opiate receptor binding experiments. Radiochem. Radioanal. Lett. 56:209–216.

    Google Scholar 

  17. Benyhe, S., Toth, G., Kevei, J., Szucs, M., Borsodi, A., Di-Gleria, K., Szecsi, J., Suli-Vargha, H., and Medzihrdaszky (1985). Characterization of rat brain opioid receptors by (Tyr-3,5-3H)1,D-Ala2,Leu5,-enkephalin binding. Neurochem. Res. 10:627–635.

    Google Scholar 

  18. Leighton, G.E., Johnson, M.A., Meecham, K.G., Hill, R.G., and Hughes, J. (1987). Pharmacological profile of PD 117302, a selective kappa-opioid agonist. Br. J. Pharmacol. 92:915–922.

    Google Scholar 

  19. Porthogese, P.S., Lipkowski, A.W., and Takemori, A.E. (1987). Binaltorphimine and norbinaltorphimine, potent and selective kappaopioid receptor antagonists. Life Sci. 40:1287–1292.

    Google Scholar 

  20. Simon, J., Benyhe, S., Abutidze, K., Borsodi, A., Szucs, M., Toth, G., and Wollemann, M. (1986). Kinetics and physical parameters of rat brain opioid receptors solubilized by digitonin and CHAPS. J. Neurochem. 46:695–701.

    Google Scholar 

  21. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

    Google Scholar 

  22. Feldman, A.H. (1972). Mathematical theory of complex ligandbinding systems of equilibrium. Anal. Biochem. 48:317–338.

    Google Scholar 

  23. Cheng, Y.N., and Prusoff, W.H. (1973). Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50% inhibition (IC50) of an enzymatic reaction. Biochem. Pharmacol. 22:3099–3108.

    Google Scholar 

  24. Furst, S., and Knoll, J. (1982). Quantitative studies of the antagonism by naloxone and N-cyclopropylmethyl-norazidodihydroisomorphine (CAM) of different opiates. Pol. J. Pharmacol. Pharm. 34:115–125.

    Google Scholar 

  25. Benyhe, S., and Wollemann, M. (1988). Ethylketocyclazocine and N-cyclopropylmethyl-norazidomorphine are antagonists of morphine-induced analgesia in frog spinal cord. Biochem. Pharmacol. 37:555–556.

    Google Scholar 

  26. Von Voigtlander, P.F., Lahti, R.A., and Ludens, J.H. (1983). U50488: A selective and structurally novel non-mu (kappa) opioid agonist. J. Pharmacol. Exp. Ther. 224:7–12.

    Google Scholar 

  27. Cone, R.I. and Goldstein, A. (1982). A dynorphine-like opioid in the central nervous system of an amphibian. Proc. Natl. Acad. Sci. USA 79:334–336.

    Google Scholar 

  28. Kilpatrick, D.L., Howells, R.D., Lahm, H.-W., and Undenfiend, S. (1983). Evidence for a proenkephalin-like precursor in amphibian brain. Proc. Natl. Acad. Sci. USA 80:5772–5775.

    Google Scholar 

  29. Kosterlitz, H.W., Paterson, S.J., and Robson, L.E. (1981). Characterization of the kappa-subtype of the opiate receptor in the guinea-pig brain. Br. J. Pharmacol. 73:939–949.

    Google Scholar 

  30. Gouarderes, C., and Cros, J. (1984). Oploid binding sites in diferent levels of rat spinal cord. Neuropeptides 5:113–116.

    Google Scholar 

  31. Benyhe, S., Simon, J., Varga, E., Borsodi, A., and Wollemann, M. (1989). The distribution of k1 and k2 opioid receptor subtypes in frog brain membrane preparation. In: Advances in Biosciences: Progress in opioid research, Pergamon Journals Ltd., Oxford, eds.: J. Cros, J.-Cl. Meunier, and M. Hamon, pp. 53–56.

    Google Scholar 

  32. Buatti, M.C., and Pasternak, G.W. (1981). Multiple opiate receptors: Phylogenetic differences. Brain Res. 218:400–405.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benyhe, S., Varga, E., Hepp, J. et al. Characterization of kappa1 and kappa2 opioid binding sites in frog (rana esculenta) brain membrane preparation. Neurochem Res 15, 899–904 (1990). https://doi.org/10.1007/BF00965909

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965909

Key Words

Navigation