Skip to main content
Log in

Expression of heat shock genes in fetal and maternal rabbit brain

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Cloned fragments of members of the Drosophila and mouse major heat shock (hsp70) gene family were used to demonstrate that homologous sequences are present in the rabbit genome. After a physiologically relevant increase in body temperature of 3°C, transcription of inducible hsp70 genes is detected in both the fetal and maternal brain and kidney. The induced hsp70 gene transcripts decay rapidly after whole body hyperthermia subsides. Transcripts of constitutively expressed member(s) of the hsp70 gene family, the heat shock cognate genes (hsc70), are detected in unstressed fetal and maternal rabbit tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ashburner, M., andBonner, J. G. 1979. The induction of gene activity in Drosophila by heat shock. Cell 17:241–254.

    Google Scholar 

  2. Schlesinger, M. J., Ashburner, M., andTissieres, A., (eds.) 1982. Heat Shock: From Bacteria to Man. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  3. Craig, E. A., Ingolia, T. D., andManseau, L. J. 1983. Expression of Drosophila heat-shock cognate genes during heat shock and development. Dev. Biol. 99:418–426.

    Google Scholar 

  4. Lowe, D. G., andMoran, L. A. 1984. Proteins related to the mouse L-cell major heat shock protein are synthesized in the absence of heat shock gene expression. Proc. Natl. Acad. Sci. USA 81:2317–2321.

    Google Scholar 

  5. Brown, I. R., Heikkila, J. J., andCosgrove, J. W. 1982. Analysis of protein synthesis in the mammalian brain using LSD and hyperthermia as experimental probes. In Molecular Approaches to Neurobiology, Academic Press, New York (I. R. Brown ed.) pp. 221–253.

    Google Scholar 

  6. Cosgrove, J. W., andBrown, I. R. 1983. Heat shock protein in mammalian brain and other organs after a physiologically relevant increase in body temperature induced by D-lysergic acid diethylamide. Proc. Natl. Acad. Sci. USA 80:569–573.

    Google Scholar 

  7. Southern, E. M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503–517.

    Google Scholar 

  8. Moran, L. A., Chauvin, M., Kennedy, M. E., Korri, M., Lowe, D. G., Nicholson, R. C., andPerry, M. D. 1983. The major heat-shock protein gene family: related sequences in mouse, Drosophila, and yeast. Can. J. Biochem. and Cell Biol. 61:488–499.

    Google Scholar 

  9. Rigby, P. W. J., Dieckman, M., Rhodes, C., andBerg, P. 1977. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J. Mol. Biol. 113:237–251.

    Google Scholar 

  10. Moran, L., Mirault, M.-E., Tissieres, A., Lis, J., Schedl, P., Artavanis-Tsakonas, S., andGehring, W. 1979. Physical map of two Drosophila melanogaster DNA segments containing sequences coding for the 70,000 dalton heat shock protein. Cell 17:1–8.

    Google Scholar 

  11. Wahl, G. M., Stern, M., andStark, G. R. 1979. Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridization using dextran sulfate. Proc. Natl. Acad. Sci. USA 76:3683–3687.

    Google Scholar 

  12. Denhardt, D. T. 1966. A membrane-filter technique for the detection of complimentary DNA. Biochim. Biophys. Res. Commun. 23:641–646.

    Google Scholar 

  13. Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J., andRutter, W. J. 1979. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochem. 18:5294–5299.

    Google Scholar 

  14. Lowe, D. G., Fulford, W. D., andMoran, L. A. 1983. Mouse and Drosophila genes encoding the major heat shock protein are highly conserved. Mol. Cell. Biol. 3:1540–1543.

    Google Scholar 

  15. Howley, P. M., Israel, M. A., Law, M.-F., andMartin, M. A. 1979. A rapid method for detecting and mapping homology between heterologous DNAs. J. Biol. Chem. 254:4876–4883.

    Google Scholar 

  16. Bardwell, J. C. A., andCraig, E. A. 1984. Major heat shock inducible gene of Drosophila and Escherichia coli heat-inducible dnaK gene are homologous. Proc. Natl. Acad. Sci. USA 81:848–852.

    Google Scholar 

  17. Ingolia, T. D., Slater, M. R., andCraig, E. A. 1982. Saccharomyces cerevisiae contains a complex multigene family related to the major heat shock-inducible gene of Drosophila. Mol. Cell. Biol. 2:1388–1398.

    Google Scholar 

  18. Ingolia, T. D., andCraig, E. A. 1982. Drosophila gene related to the major heat shockinducible gene is transcribed at normal temperatures and not induced by heat shock. Proc. Natl. Acad. Sci. USA 79:525–529.

    Google Scholar 

  19. Brown, I. R. 1983. Hyperthermia induces the synthesis of a heat shock protein by polysomes isolated from the fetal and neonatal mammalian brain. J. Neurochem., 40:1490–1493.

    Google Scholar 

  20. Clark, B. D., andBrown, I. R. 1985. Axonal transport of a heat shock protein in the rabbit visual system. Proc. Natl. Acad. Sci. USA 82:1281–1285.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, I.R., Lowe, D.G. & Moran, L.A. Expression of heat shock genes in fetal and maternal rabbit brain. Neurochem Res 10, 1277–1284 (1985). https://doi.org/10.1007/BF00964846

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964846

Keywords

Navigation