Skip to main content
Log in

Receptors and G proteins as primary components of transmembrane signal transduction

Part 1. G-protein-coupled receptors: structure and function

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abbreviations

FSH :

Follicle-stimulating hormone

GnRH :

Gonadotropin-releasing hormone

G-protein :

Guanine nucleotide binding protein

hCG :

Human chorionic gonadotropin

LH :

Luteinizing hormone

PACAP :

Pituitary adenylyl cyclase activating peptide

TRH :

Thyrotropin-releasing hormone

TSH :

Thyroid-stimulating hormone

References

  1. Barnard EA (1992) Receptor classes and the transmitter-gated ion channels. Trends Pharmacol Sci 17: 368–374

    Google Scholar 

  2. Strader CD, Fong TM, Tota MR, Underwood D, Dixon RAF (1994) Structure and function of G protein-coupled receptors. Annu Rev Biochem 63: 101–132

    Google Scholar 

  3. Baldwin JM (1993) The probable arrangement of the helices in G protein-coupled receptors. EMBO J 12: 1693–1703

    Google Scholar 

  4. Donnelly D, Findlay JBC, Blundell TL (1994) The evolution and structure of aminergic G protein-coupled receptors. Receptors and Channels 2: 61–78

    Google Scholar 

  5. Hoflack J, Trumpp Kallmeyer S, Hibert M (1994) Re-evaluation of bacteriorhodopsin as a model for G protein-coupled receptors. Trends Pharmacol Sci 15: 7–9

    Google Scholar 

  6. Zhang R, Tsai-Morris CH, Kitamura M, Buczko E, Dufau ML (1991) Changes in binding activity of luteinizing hormone receptors by site directed mutagenesis of potential glycosylation sites. Biochem Biophys Res Commun 181: 804–808

    Google Scholar 

  7. Dattatreyamurty B, Reichert LE (1992) Carbohydrate moiety of follitropin receptor is not required for high-affinity hormone binding or for functional coupling between receptor and guanine nucleotide-binding protein in bovine calf testis membranes. Endocrinology 131: 2437–2445

    Google Scholar 

  8. Nagayama Y, Rapoport B (1992) The thyrotropin receptor 25 years after its discovery: new insights after its molecular cloning. Mol Endocrinol 6: 145–156

    Google Scholar 

  9. Tapanainen JS, Bo M, Dunkel L, Billig H, Perlas EA, Boime I, Hsueh AJW (1993) Deglycosylation of the human luteinizing hormone receptor does not affect ligand binding and signal transduction. Endocrine J 1: 219–225

    Google Scholar 

  10. Davidson JS, Flanagan CA, Becker II, Illing N, Sealfon SC, Millar RP (1994) Molecular function of the gonadotropin-releasing hormone receptor: insights from site-directed mutagenesis. Mol Cell Endocrinol 100: 9–14

    Google Scholar 

  11. Gudermann T, Birnbaumer M, Birnbaumer L (1992) Evidence for dual coupling of the murine luteinizing hormone receptor to adenylyl cyclase and phosphoinositide breakdown and Ca2+ mobilization. J Biol Chem 267: 4479–4488

    Google Scholar 

  12. Segaloff DL, Ascoli M (1993) The lutropin/choriogonadotropin receptor... 4 years later. Endocr Rev 14: 324–347

    Google Scholar 

  13. Sanchez-Yagüe J, Rodriguez MC, Segaloff DL, Ascoli M (1992) Truncation of the cytoplasmic tail of the lutropin/choriogonadotropin receptor prevents agonist-induced uncoupling. J Biol Chem 267: 7217–7220

    Google Scholar 

  14. Zhu X, Gudermann T, Birnbaumer M, Birnbaumer L (1993) A luteinizing hormone receptor with a severly truncated cytoplasmic tail (LHR-ct628) desensitizes to the same degree as the full-length receptor. J Biol Chem 268: 1723–1728

    Google Scholar 

  15. Dohlman HG, Thorner J, Caron MG, Lefkowitz RJ (1991) Model systems for the study of seven-transmembrane-segment receptors. Annu Rev Biochem 60: 653–688

    Google Scholar 

  16. Khorana HG (1992) Rhodopsin, photoreceptor of the cell. J Biol Chem 267: 1–4

    Google Scholar 

  17. Wang C-D, Buck MA, Fraser CM (1991) Site-directed mutagenesis of α2A-adrenergic receptors: identification of amino acids involved in ligand binding and receptor activation by agonists. Mol Pharmacol 40: 168–179

    Google Scholar 

  18. Zhu G, Wu L-H, Mauzy C, Egloff AM, Mirzadegan T, Chung F-Z (1992) Replacement of Iysine-181 by aspartic acid in the third transmembrane region of endothelin type B receptor reduces ist affinity to endothelin peptides and sarafotoxin 6c without affecting G protein coupling. J Cell Biochem 50: 159–164

    Google Scholar 

  19. Chung F-Z, Wang C-D, Potter PC, Venter JC, Fraser CM (1988) Site-directed mutagensis and continuous expression of human β-adrenergic receptors. J Biol Chem 263: 4052–4055

    Google Scholar 

  20. Bihoreau C, Monnot C, Davies E, Teutsch B, Bernstein KE, Corvol P, Clauser E (1993) Mutation of Asp74 of the rat angiotensin II receptor confers changes in antagonist affinities and abolishes G-protein coupling. Proc Natl Acad Sci USA 90: 5133–5137

    Google Scholar 

  21. Kong H, Raynor K, Yasuda K, Bell GI, Reisine T (1993) Mutation of an aspartate at residue 89 in somatostatin receptor subtype 2 prevents Na+ regulation of agonist binding but does not alter receptor-G protein association. Mol Pharmacol 44: 380–384

    Google Scholar 

  22. Nakajima Y, Iwakabe H, Akazawa C, Nawa H, Shigemoto R, Mizuno N, Nakanishi S (1993) Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2-amino-phosphobutyrate. J Biol Chem 268: 11868–11873

    Google Scholar 

  23. Schoepp DD, Conn PJ (1993) Metabotropic glutamate receptors in brain function and pathology. Trends Pharmacol Sci 14: 13–20

    Google Scholar 

  24. Okamoto N, Hori S, Akazawa C, Hayashi Y, Shigemoto R, Mizuno N, Nakanishi S (1994) Molecular characterization of a new metabotropic glutamate receptor mGluR7 coupled to inhibitory cyclic AMP signal transduction. J Biol Chem 269: 1231–1236

    Google Scholar 

  25. Brown EM, Gamba G, Riccardi D, Lonbardi M, Butters R, Kifor O, Sun A, Hediger MA, Lytton J, Herbert SC (1993) Cloning and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid. Nature 366: 575–580

    Google Scholar 

  26. O'Hara P, Sheppard PO, Thogersen H, Venezia D, Halderman BA, McGrane V, Houamed KM, Gilbert TL, Mulvihill ER (1993) The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins. Neuron 11: 41–52

    Google Scholar 

  27. Chen J, Ishii M, Wang L, Ishii K, Coughlin SR (1994) Thrombin receptor activation. J Biol Chem 269: 16041–16045

    Google Scholar 

  28. Gerszten RE, Chen J, Ishii M, Ishii K, Wang L, Nanevicz T, Turck CW, Vu T-KH, Coughlin SR (1994) Specificity of the thrombin receptor for agonist peptide is defined by its extracellular surface. Nature 368: 648–651

    Google Scholar 

  29. Walker P, Munoz M, Martinez R, Peitsch MC (1994) Acidic residues in extracellular loops of the human Y1 neuropeptide Y receptor are essential for ligand binding. J Biol Chem 269: 2863–2869

    Google Scholar 

  30. Schambye HT, Hjorth SA, Bergsma DJ, Sathe G, Schwartz TW (1994) Differentiation between binding sites for angiotensin II and nonpeptide antagonists on the angiotensin II type 1 receptors. Proc Natl Acad Sci USA 91: 7046–7050

    Google Scholar 

  31. Beinborn M, Lee Y-M, McBride EW, Quinn SM, Kopin AS (1993) A single amino acid of the cholecystokinin-B/gastrin receptor determines specificity for non-peptide antagonists. Nature 362: 348–350

    Google Scholar 

  32. Takasuba T, Sakurai T, Goto K, Furuichi Y, Watanabe T (1994) Human endothelin receptor ETB. J Biol Chem 269: 7509–7513

    Google Scholar 

  33. Krystek Jr SR, Patel PS, Rose PM, Fisher SM, Kienzle B, Lach DA, Liu EC-K, Lynch JS, Novotny J, Webb ML (1994) Mutation of peptide binding site in transmembrane region of a G protein-coupled receptor accounts for endothelin receptor subtype selectivity. J Biol Chem 269: 12338–12386

    Google Scholar 

  34. Lee JA, Elliott JD, Sutiphong JA, Friesen WJ, Ohlstein EH, Stadel JM, Gleason JG, Peishoff CE (1994) Tyr-129 is important to the peptide ligand affinity and selectivity of human endothelin type A receptor. Proc Natl Acad Sci USA 91: 7164–7168

    Google Scholar 

  35. Nardone J, Hogan PG (1994) Delineation of a region in the B2 bradykinin receptor that is essential for high-affinity agonist binding. Proc Natl Acad Sci USA 91: 4417–4421

    Google Scholar 

  36. DeMartino JA, Riper GV, Siciliano SJ, Molineaux CJ, Konteatis ZD, Rosen H, Springer MS (1994) The amino terminus of the human C5a receptor is required for high affinity C5a binding and for receptor activation by C5a but not C5a analogs. J Biol Chem 269: 14446–14450

    Google Scholar 

  37. Siciliano SJ, Rollins TE, DeMartino J, Konteatis Z, Malkowitz L, Van Riper G, Bondy S, Rosen H, Springer MS (1994) Two-site binding of C5a by its receptor: an alternative binding paradigm for G protein-coupled receptors. Proc Natl Acad Sci USA 91: 1214–1218

    Google Scholar 

  38. Perez HD, Vilander L, Andrews WH, Holmes R (1994) Human formyl peptide receptor ligand binding domain(s). J Biol Chem 269: 22485–22487

    Google Scholar 

  39. Perlman JH, Thaw CN, Laakkonen L, Bowers CY, Osman R, Gershengorn MC (1994) Hydrogen bonding interaction of thyrotropin-releasing hormone (TRH) with transmembrane tyrosine 106 of the TRH receptor. J Biol Chem 269: 1610–1613

    Google Scholar 

  40. Stojilkovic SS, Reinhart J, Catt KJ (1994) Gonadotropin-releasing hormone receptors: structure and signal transduction pathways. Endocr Rev 15: 462–499

    Google Scholar 

  41. Flanagan CA, Becker II, Davidson JS, Wakefield IK, Zhou W, Sealfon SC, Millar RP (1994) Glutamate 301 of the mouse gonadotropin-releasing hormone receptor confers specificity for arginine 8 of mammalian gonadotropin-releasing hormone. J Biol Chem 269: 22636–22641

    Google Scholar 

  42. Cook JV, Faccenda E, Anderson L, Couper GC, Eidne KA, Taylor PL (1993) Effects of Asn87 and Asp318 mutations on ligand binding and signal transduction in the rat GnRH receptor. J Endocrinol 139: R1-R4

    Google Scholar 

  43. Zhou W, Flanagan C, Ballesteros JA, Konvicka K, Davidson JS, Weinstein H, Millar RP, Sealfon SC (1994) A reciprocal mutation supports helix 2 and helix 7 proximity in the gonadotropin-releasing hormone receptor. Mol Pharmacol 45: 165–170

    Google Scholar 

  44. Marie J, Maigret B, Joseph M-P, Larguier R, Nouet S, Lombard C, Bonnafous J-C (1994) Tyr292 in the seventh transmembrane domain of the AT1A angiotensin II receptor is essential for its coupling to phospholipase C. J Biol Chem 269: 20815–20818

    Google Scholar 

  45. Moyle WR, Campbell RK, Myers RV, Bernard MP, Han Y, Wang X (1994) Co-evolution of ligand-receptor pairs. Nature 368: 251–255

    Google Scholar 

  46. Ji I, Zeng H, Ji TH (1993) Receptor activation of and signal generation by the lutropin/choriogonadotropin receptor. J Biol Chem 268: 22971–22974

    Google Scholar 

  47. Lapthorn AJ, Harris DC, Littlejohn A, Lustbader JW, Canfield RE, Machin KJ, Morgan FJ, Isaacs NW (1994) Crystal structure of human chorionic gonadotropin. Nature 369: 455–461

    Google Scholar 

  48. Campbell RK, Dean-Emig DM, Moyle WR (1991) Conversion of human choriogonadotropin into a follitropin by protein engineering. Proc Natl Acad Sci USA 88: 760–764

    Google Scholar 

  49. Chen F, Wang Y, Puett D (1992) The carboxy-terminal region of the glycoprotein hormone α-subunit: Mol Endocrinol 6: 914–919

    Google Scholar 

  50. Wess J (1993) Molecular basis of muscarinic acetylcholine receptor function. Trends Pharmacol Sci 14: 308–313

    Google Scholar 

  51. Ohyama K, Yamano Y, Chaki S, Kondo T, Inagami T (1992) Domains for G-protein coupling in angiotensin II receptor type 1: studies by site-directed mutagenesis. Biochem Biophys Res Commun 189: 677–683

    Google Scholar 

  52. Spengler D, Waeber C, Pantaloni C, Holsboer F, Bockaert J, Seeburg PH, Journot L (1993) Differential signal transduction by five splice variants of the PACAP receptor. Nature 365: 170–175

    Google Scholar 

  53. Hawes BE, Luttrell LM, Exum ST, Lefkowitz RJ (1994) Inhibition of G protein-coupled receptor signaling by expression of cytoplasmic domains of the receptor. J Biol Chem 269: 15776–15785

    Google Scholar 

  54. Luttrell LM, Ostrowski J, Cotecchia S, Kendall H, Lefkowitz RJ (1993) Antagonism of catecholamine receptor signaling by expression of cytoplasmic domains of the receptor. Science 259: 1453–1457

    Google Scholar 

  55. Kunkel MT, Peralta EG (1993) Charged amino acids required for signal transduction by the m3 muscarinic acetylcholine receptor. EMBO J 12: 3809–3815

    Google Scholar 

  56. Blüml K, Mutschler E, Wess J (1994) Functional role of a cytoplasmic aromatic amino acid in muscarinic receptor-mediated activation of phospholipase C. J Biol Chem 269: 11537–11541

    Google Scholar 

  57. Schreiber RE, Prossnitz ER, Ye RD, Cochrane CG, Bokoch GM (1994) Domains of the human neutrophil N-formyl peptide receptor involved in G protein coupling. J Biol Chem 269: 326–331

    Google Scholar 

  58. Varrault A, Nguyen DL, McClue S, Harris B, Jouin P, Bockaert J (1994) 5-Hydroxytryptamine1A receptor synthetic peptides. J Biol Chem 269: 16720–16725

    Google Scholar 

  59. Ross EM, Higashijima T (1994) Regulation of G-protein activation by mastoparans and other cationic peptides. Methods Enzymol 237: 26–37

    Google Scholar 

  60. Wang H, Jaquette J, Collison K, Segaloff DL (1993) Positive charges in a putative amphiphilic helix in the carboxyl-terminal region of the third intracellular loop of the luteinizing hormone/chorionic gonadotropin receptor are not required for hormone-stimulated cAMP production but are necessary for expression of the receptor at the plasma membrane. Mol Endocrinol 7: 1437–1444

    Google Scholar 

  61. Körner C, Nürnberg B, Uhde M, Braulke T (1995) Mannose 6-phosphate/insulin-like growth factor II receptor fails to interact with G-proteins. J Biol Chem, in press

  62. Giros B, Sokoloff P, Martres M-P, Riou J-F, Emorine LJ, Schwartz J-C (1989) Alternative splicing directs the expression of two D2 dopamine receptor isoforms. Nature 342: 923–926

    Google Scholar 

  63. Monsma FJ, McVittie LD, Gerfen CR, Mahan LC, Sibley DR (1989) Multiple D2 dopamine receptors produced by alternative RNA splicing. Nature 342: 926–929

    Google Scholar 

  64. Montmayeur J-P, Guiramand J, Borelli E (1993) Preferential coupling between dopamine D2 receptors and G-proteins. Mol Endocrinol 7: 161–170

    Google Scholar 

  65. Liu YF, Jakobs KH, Rasenick MM, Albert PR (1994) G protein specificity in receptor-effector coupling. J Biol Chem 269: 13880–13886

    Google Scholar 

  66. Wong SK-F, Ross EM (1994) Chimeric muscarinic cholinergic: β-adrenergic receptors that are functionally promiscuous among G proteins. J Biol Chem 269: 18969–18976

    Google Scholar 

  67. Pin J-P, Joly C, Heinemann SF, Bockaert J (1994) Domains involved in the specificity of G protein activation in phospholipase C-coupled metabotropic glutamate receptors. EMBO J 13: 342–348

    Google Scholar 

  68. Moro O, Lameh J, Högger P, Sadée W (1993) Hydrophobic amino acid in the i2 loop plays a key role in receptor-G protein coupling. J Biol Chem 268: 22273–22276

    Google Scholar 

  69. Namba T, Sugimoto Y, Negishi M, Irie A, Ushikubi F, Kakizuka A, Ito S, Ichikawa A, Narumiya S (1993) Alternative splicing of C-terminal tail of prostaglandin E receptor subtype EP3 determines G-protein specificity. Nature 365: 166–170

    Google Scholar 

  70. Fong TM, Anderson SA, Yu H, Huang R-RC, Strader CD (1991) Differential activation of intracellular effector by two isoforms of human neurokinin-1 receptor. Mol Pharmacol 41: 24–30

    Google Scholar 

  71. Kosugi S, Okajima F, Ban T, Hidaka A, Shenker A, Kohn LD (1992) Mutation of alanine 623 in the third cytoplasmic loop of the rat thyrotropin (TSH) receptor results in a loss in the phosphoinositide but not cAMP signal induced by TSH and receptor autoantibodies. J Biol Chem 267: 24153–24156

    Google Scholar 

  72. Kosugi S, Okajima F, Ban T, Hidaka A, Shenker A, Kohn LD (1993) Substitutions of different regions of the third cytoplasmic loop of the thyrotropin (TSH) receptor have selective effects on constitutive, TSH-, and TSH receptor autoantibody-stimulated phosphoinositide and 3′, 5′-cyclic adenosine monophosphate signal generation. Mol Endocrinol 7: 1009–1020

    Google Scholar 

  73. Kosugi S, Kohn LD, Akamizu T, Mori T (1994) The middle portion in the second cytoplasmic loop of the thyrotropin receptor plays a crucial role in adenylate cyclase activation. Mol Endocrinol 8: 498–509

    Google Scholar 

  74. Kosugi S, Mori T (1994) The first cytoplasmic loop of the thyrotropin receptor is important for phosphoinositide signaling but not for agonist-induced adenylate cyclase activation. FEBS Lett 341: 162–166

    Google Scholar 

  75. Kosugi S, Mori T (1994) The intracellular region adjacent to plasma membrane (residues 684–692) of the thyrotropin receptor is important for phosphoinositide signaling but not for agonist-induced adenylate cyclase activation. Biochem Biophys Res Commun 199: 1497–1503

    Google Scholar 

  76. Zhu SZ, Wang SZ, Hu J, El-Fakahany EE (1994) An arginine residue conserved in most G protein-coupled receptors is essential for the function of the M1 muscarinic receptor. Mol Pharmacol 45: 517–523

    Google Scholar 

  77. Wang Z, Wang H, Ascoli M (1993) Mutation of a highly conserved acidic residue present in the second intracellular loop of G-protein-coupled receptors does not impair hormone binding or signal transduction of the luteinizing hormone/chorionic gonadotropin receptor. Mol Endocrinol 7: 85–93

    Google Scholar 

  78. Oliveira L, Paiva ACM, Sander C, Vriend G (1994) A common step for signal transduction in G protein-coupled receptors. Trends Pharmacol Sci 15: 170–172

    Google Scholar 

  79. Rodbell M, Krans HMJ, Pohl SL, Birnbaumer L (1971) The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. IV. Binding of glucagon: effect of guanyl nucleotides. J Biol Chem 246: 1872–1876

    Google Scholar 

  80. Lefkowitz RJ, Cotecchia S, Samana P, Costa T (1993) Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins. Trends Pharmacol Sci 14: 303–307

    Google Scholar 

  81. Samana P, Cotecchia S, Costa T, Lefkowitz RJ (1993) A mutation-induced activated state of the β2-adrenergic receptor. J Biol Chem 268: 4625–4636

    Google Scholar 

  82. Barker EL, Westphal RS, Schmidt D, Sanders-Bush E (1994) Constitutively active 5-hydroxytryptamine2C receptors reveal novel inverse agonist activity of receptor ligands. J Biol Chem 269: 11687–11690

    Google Scholar 

  83. Tian W-N, Duzic E, Lanier SM, Deth RC (1994) Determinants of α2-adrenergic receptor activation of G proteins: evidence for a precoupled receptor/G protein state. Mol Pharmacol 45: 524–531

    Google Scholar 

  84. Parma J, Dupret L, Van Sande J, Paschke R, Tonacchera M, Dumont JE, Vassart G (1994) Constitutively active receptors as a disease-causing mechanism. Mol Cell Endocrinol 100: 159–162

    Google Scholar 

  85. Duprez L, Parma J, Van Sande J, Allgeier A, Leclère J, Schvartz C, Delisle M-J, Decoulx M, Orgiazzi J, Dumont JE, Vassart G (1994) Germline mutations in the thyrotropin receptor gene cause non-autoimmune autosomal dominant hyperthyroidism. Nature Genetics 7: 396–401

    Google Scholar 

  86. Erlander MG, Lovenberg TW, Baron BM, De Lecea L, Danielson PE, Racke M, Slone AL, Siegel BW, Foye PE, Cannon K, Burns J, Sutcliffe JG (1993) Two members of a distinct subfamily of 5-hydroxytryptamine receptors differentially expressed in rat brain. Proc Natl Acad Sci USA 90: 3452–3456

    Google Scholar 

  87. Monsma FJ, Shen Y, Ward RP, Hamblin MW, Sibley DR (1993) Cloning and expression of a novel serotonin receptor with high affinity for tricyclic psychotropic drugs. Mol Pharmacol 43: 320–327

    Google Scholar 

  88. Ruat M, Traiffort E, Arrang JM, Tarvidel-Lacombe J, Diaz J, Leurs R, Schwartz J-C (1993) A novel rat serotonin (5-HT6) at receptor: molecular cloning, localization and stimulation of cAMP accumulation. Biochem Biophys Res Commun 193: 268–276

    Google Scholar 

  89. Ruat M, Traiffort E, Leurs R, Tardivel-Lacombe J, Diaz J, Arrang J-M, Schwartz J-C (1993) Molecular cloning, characterization, and localization of a high-affinity serotonin receptor (5-HT7) activating cAMP formation. Proc Natl Acad Sci USA 90: 8547–8551

    Google Scholar 

  90. Shen Y, Monsma FJ, Metcalf MA, Jose PA, Hamblin MW, Sibley DR (1993) Molecular cloning and expression of a 5-hydroxytryptamine7 serotonin receptor subtype. J Biol Chem 268: 18200–18204

    Google Scholar 

  91. Watson S, Arkinstall S (1994) The G-protein linked receptor facts book. Academic, London

    Google Scholar 

  92. De la Pena P, Delgado LM, Del Camino D, Barros F (1992) Two isoforms of the thyrotropin-releasing hormone receptor generated by alternative splicing have indistinguishable functional properties. J Biol Chem 267: 25703–25708

    Google Scholar 

  93. Zolnierowicz S, Cron P, Solinas-Toldo S, Fries R, Lin HY, Hemmings BA (1994) Isolation, characterization, and chromosomal localization of the porcine calcitonin receptor gene. J Biol Chem 269: 19530–19538

    Google Scholar 

  94. Raychowdhury MK, Yukawa M, Collins LJ, McGrail SH, Kent KC, Ware JA (1994) Alternative splicing produces a divergent cytoplasmic tail in the human endothelial thromboxane A2 receptor. J Biol Chem 269: 19256–19261

    Google Scholar 

  95. Ashkenazi A, Winslow JW, Peralta EG, Peterson GL, Schimerlik MI, Capon DJ, Ramachandran J (1987) An M2 muscarinic receptor subtype coupled to both adenylyl cyclase and phosphoinositide turnover. Science 238: 672–675

    Google Scholar 

  96. Fargin A, Raymond JR, Regan JW, Cotecchia S, Lefkowitz RJ, Caron MG (1989) Effector coupling mechanisms of the cloned 5-HT1A receptor. J Biol Chem 264: 14848–14852

    Google Scholar 

  97. Cotecchia S, Kobilka BK, Daniel KW, Nolan RD, Lapetina EY, Caron MG, Lefkowitz RJ, Regan JW (1990) Multiple second messenger pathways of α-adrenergic receptor subtypes expressed in eukaryotic cells. J Biol Chem 265: 63–69

    Google Scholar 

  98. Vallar L, Muca C, Magni M, Albert P, Bunzow J, Meldolesi J, Civelli O (1990) Differential coupling of dopaminergic D2 receptors expressed in different cell types. J Biol Chem 265: 10320–10326

    Google Scholar 

  99. Raymond JR, Albers FJ, Middleton JP, Lefkowitz RJ, Caron MG, Obeid LM, Dennis VW (1991) 5-HT1A and histamine H1 receptors in HeLa cells stimulate phosphoinositide hydrolysis and phosphate uptake via distinct G protein pools. J Biol Chem 266: 372–379

    Google Scholar 

  100. Liu YF, Civelli O, Zhou Q-Y, Albert PR (1992) Cholera toxin-sensitive 3′-5′-cyclic adenosine monophosphate and calcium signals of the human dopamine-D1 receptor: selective potentiation by protein kinase A. Mol Endocrinol 6: 1815–1824

    Google Scholar 

  101. Abou-Samra AB, Jüppner H, Force T, Freeman MW, Kong XF, Schipani E, Urena P, Richards J, Bonventre JV, Potts Jr JT, Kronenberg HM, Segre JV (1992) Expression cloning of a common receptor for parathyroid hormone and parathyroid hormone-related peptide from rat osteoblast-like cells: a single receptor stimulates intracellular accumulation of both cAMP and inositol trisphosphates and increases intracellular free calcium. Proc Natl Acad Sci USA 89: 2732–2736

    Google Scholar 

  102. Chabre O, Conklin BR, Lin HY, Lodish HF, Wilson E, Ives HE, Catanzariti L, Hemmings BA, Bourne HR (1992) A recombinant calcitonin receptor independently stimulates 3′, 5′-cyclic adenosine monophosphate and Ca2+/inositol phosphate signaling pathways. Mol Endocrinol 6: 551–556

    Google Scholar 

  103. Jelinek LJ, Lok S, Rosenberg GB, Smith RA, Grant FJ, Biggs S, Bensch PA, Kuijper JL, Sheppard PO, Sprecher CA, O'Hara PJ, Foster D, Walker KM, Chen LHJ, McKernan PA, Kindsvogel W (1993) Expression cloning and signaling properties of the rat glucagon receptor. Science 259: 1614–1616

    Google Scholar 

  104. Wheeler MB, Lu M, Dillon JS, Leng X-H, Chen C, Boyd III AE (1993) Functional expression of the rat glucagon-like peptide-I receptor: evidence for coupling to both adenylyl cyclase and phospholipase C. Endocrinology 133: 57–62

    Google Scholar 

  105. Van Sande J, Raspé J, Perret J, Lejeune C, Maenhaut C, Vassart G, Dumont JE (1990) Thyrotropin activates both the cAMP and the PIP2 cascade in CHO cells expressing the human cDNA of the TSH receptor. Mol Cell Endocrinol 74: R1-R6

    Google Scholar 

  106. Gudermann T, Nichols C, Levy FO, Birnbaumer M, Birnbaumer L (1992) Ca2+ mobilization by the LH receptor expressed in Xenopus oocytes independent of 3', 5'-cyclic adenosine monophosphate formation: evidence for parallel activation of two signaling pathways. Mol Endocrinol 6: 272–278

    Google Scholar 

  107. Quintana J, Hipkin RW, Sanchez-Yagüe J, Ascoli M (1994) Follitropin (FSH) and a phorbol ester stimulate the phosphorylation of the FSH receptor in intact cells. J Biol Chem 269: 8772–8779

    Google Scholar 

  108. Birnbaumer L (1992) Receptor-to-effector signaling through G proteins: roles for βγ dimers as well as α subunits. Cell 71: 1069–1072

    Google Scholar 

  109. Allgeier A, Offermanns S, Van Sande J, Spicher K, Schultz G, Dumont JE (1994) The human thyrotropin receptor activates G-proteins G s and Gq/11. J Biol Chem 269: 13733–13735

    Google Scholar 

  110. Offermanns S, Schultz G (1994) Complex information processing by the transmembrane signaling system involving G proteins. Naunyn Schmiedebergs Arch Pharmacol 350: 329–338

    Google Scholar 

  111. Chabre O, Conklin BR, Brandon S, Bourne HR, Limbird LE (1994) Coupling of the α2A-adrenergic receptor to multiple G-proteins. J Biol Chem 269: 5730–5734

    Google Scholar 

  112. Hirata M, Hayashi Y, Ushikubi F, Yokato Y, Kageyama R, Nakanishi S, Narumiya S (1991) Cloning and expression of cDNA for a human thromboxane A2 receptor. Nature 349: 617–620

    Google Scholar 

  113. Asano T, Morishita R, Matsuda T, Fukada Y, Yoshizawa T, Kato K (1993) Purification of four forms of the βγ subunit complex of G proteins containing different γ subunits. J Biol Chem 268: 20512–20519

    Google Scholar 

  114. Müller S, Hekman M, Lohse MJ (1993) Specific enhancement of β-adrenergic receptor kinase activity by defined Gprotein β and γ subunits. Proc Natl Acad Sci USA 90: 10439–10443

    Google Scholar 

  115. Kisselev O, Gautam N (1993) Specific interaction with rhodopsin is dependent on the γ subunit type in a G protein. J Biol Chem 268: 24519–24522

    Google Scholar 

  116. Kisselev O, Ermolaeva MV, Gautam N (1994) A farnesylated domain in the G protein γ subunit is a specific determinant of receptor coupling. J Biol Chem 269: 21399–21402

    Google Scholar 

  117. Kalkbrenner F, Degtiar V, Schenker M, Hescheler J, Brendel S, Wittig B, Schultz G (1994) Subunit composition of the Gprotein coupling galanin receptor to L-type calcium channels. Naunyn-Schmiedebergs Arch Pharmacol 349: R13

    Google Scholar 

  118. Peng YW, Robishaw JD, Levine MA, Yau KW (1992) Retinal rods and cones have distinct G protein β and γ subunits. Proc Natl Acad Sci USA 89: 10882–10886

    Google Scholar 

  119. Schütz W, Freissmuth M (1992) Reverse intrinsic activity of antagonists on G protein-coupled receptors. Trends Pharmacol Sci 13: 376–380

    Google Scholar 

  120. Nürnberg B, Gudermann T, Schultz G (1995) Receptors and G proteins as primary components of transmembrane signal transduction. II. G proteins: structure and function. J Mol Med (in press)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gudermann, T., Nürnberg, B. & Schultz, G. Receptors and G proteins as primary components of transmembrane signal transduction. J Mol Med 73, 51–63 (1995). https://doi.org/10.1007/BF00270578

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00270578

Key words

Navigation