Skip to main content
Log in

The concentration jump method

Kinetics of vital staining of mitochondria in HeLa cells with lipophilic cationic fluorescent dyes

  • Originals
  • Published:
Histochemistry Aims and scope Submit manuscript

Abstract

Lipophilic cationic fluorescent dyes (D) specifically stain the mitochondria of living cells. A perfusion chamber for cell cultures is described, which can be used to determine the kinetics of vital staining of the mitochondria of single selected cells in situ. In these experiments styrylpyridinium dyes and cultures of HeLa cells were used. The dyes differ strongly in their lipophilic properties; R m values and the partition coefficients P o/w between n-octanol (o) and water (w) were determined in order to characterize their lipophilicity. In the thermostat-regulated chamber the concentration of the dye C D can be increased from C D=0 to C D>0 within a few seconds (concentration jump). Thus, the time t=0 for the beginning of the vital staining and the dye concentration in the cell medium during the staining experiment, C D=const., are unambiguously defined. The concentration of the dye, C b, which is bound to the mitochondria (b), is proportional to the intensity of the fluorescence I b. On the other hand, the free dye molecules (f) in the aqueous medium exhibit practically no fluorescence, I fI b. The intensity of the fluorescence I=I b was measured as a function of time t; the measured values were corrected for photobleaching. The fluorescence intensity I(t) at first increases linearly with t and reaches a saturation value for t → ∞. In the linear range of I(t) the flow J o=(dI/dt)o of the dye into the cell depends strongly on the dye concentration and increases linearly with C D. The concentration range C D=10−9−10−5 M at 37° C was investigated. From the linear correlation between J o and C D it follows that the kinetics of the vital staining of mitochondria is controlled by diffusion. At t=0 the flow of the xenobiotic agent through the cell membrane determines the rate of staining. The slope dJ o/dC D of the plot J o vs C D describes the efficiency of dye accumulation at the mitochondria and strongly increases with increasing lipophilicity of the dye molecules. Thus lipophilic dyes pass through the cell membrane more easily than less lipophilic molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bereiter-Hahn J (1976) Dimethylaminostyrylmethylpyridiniumiodine (DASPMI) as a fluorescent probe for mitochondria in situ. Biochim Biophys Acta 423:1–14

    Google Scholar 

  • Bereiter-Hahn J, Seipel K-H, Vöth M, Ploem S (1983) Fluorimetry of mitochondria in cells vitally stained with DASPMI or rhodamine 6 GO. Cell Biochem Funct 1:147–155

    Google Scholar 

  • Chen LB (1989) Fluorescent labeling of mitochondria. Methods Cell Biol 29:103–123

    Google Scholar 

  • Chen LB, Summerhayer L, Johnson LV, Walsh ML, Bernal SD, Lampidis TJ (1981) Probing mitochondria in living cells with rhodamine 123. Symp Quant Biol 46:141–155

    Google Scholar 

  • Duff DG, Horobin RW, Proctor GB (1985) Estimating the hydrophobic character of dyestuffs: a comparison of partition, reversed phase thin layer chromatography, and calculation. Dyes Pigments 113:1–45

    Google Scholar 

  • Dvorak JA, Stotler WF (1971) A controlled-environment culture system for high resolution light microscopy. Exp Cell Res 68:144–148

    Google Scholar 

  • Erbrich U, Naujok A, Petschel K, Zimmermann HW (1982) Über die Vitalfluorochromierung von Mitochondrien in HeLa- und LM-Zellen mit neuen Acridinfarbstoffen. Histochemistry 74:1–7

    Google Scholar 

  • Erbrich U, Septinus M, Naujok A, Zimmermann HW (1984) Über hydrophobe Acridinfarbstoffe zur Fluorochromierung von Mitochondrien in lebenden Zellen. 2. Mitteilung: Vergleich der Färbung lebender und fixierter HeLa-Zellen mit NAO und DPPAO. Histochemistry 80:385–388

    Google Scholar 

  • Frömter E (1982) Stofftransport durch biologische Membranen. In: Hoppe W, Lohmann W, Markel H, Ziegler H (eds), Biophysik, 2nd edn. Springer, Berlin Heidelberg New York, p 500

    Google Scholar 

  • Goldstein DJ (1980) A microdensitometric method for the analysis of staining kinetics. J Microsc 119:331–343

    Google Scholar 

  • Hassner A, Birnbaum D, Loew LM (1984) Charge shift probes of membrane potentials. J Org Chem 49:2546–2551

    Google Scholar 

  • Holbrook Howard PJ, Wilson SB (1979) Effects of the cyanine dye 3,3′-dipropylthiocarbocyanine on mitochondrial energy conservation. Biochem J 180:669–672

    Google Scholar 

  • Johnson LV, Walsh ML, Chen LB (1980) Localization of mitochondria in living cells with rhodamine 123. Proc Natl Acad Sci USA 77:990–994

    Google Scholar 

  • Johnson LV, Walsh ML, Bockus BJ, Chen LB (1981) Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy. J Cell Biol 88:526–535

    Google Scholar 

  • Johnson LV, Summerhayer TC, Chen LB (1982) Decreased uptake and retention of rhodamine 123 by mitochondria in feline sarcoma virus-transformed mink cells. Cell 28:7–14

    Google Scholar 

  • Leo A, Hansch C, Elkins D (1971) Partition coefficients and their uses. Chem Rev 71:525–616

    Google Scholar 

  • Maftah A, Petit JM, Julien R (1990) Specific interaction of the new fluorescent dye 10-N-nonyl acridine orange with inner mitochondrial membrane. FEBS Lett 260:236–240

    Google Scholar 

  • Parker CA, Rees WT (1960) Correction of fluorescence spectra and measurement of fluorescence quantum efficiency. Analyst 85:587–600

    Google Scholar 

  • Paul J (1986) Zell- und Gewebekulturen. de Gruyter, Berlin New York

    Google Scholar 

  • Philips AP (1974) Condensation of aromatic aldehydes with α-picoline methiodide. J Org Chem 12:333–341

    Google Scholar 

  • Ratinaud MH, Leprat P, Julien R (1988) In situ flow cytometric analysis of nonyl acridine orange stained mitochondria from splenocytes. Cytometry 9:206–212

    Google Scholar 

  • Robbins E (1960) The rate of proflavine passage into single living cells with application to permeability studies. J Gen Physiol 43:853–866

    Google Scholar 

  • Röttele J (1989) Über Transport und Bindung lipophiler Farbstoffe in HeLa-Zellen und Hepatocyten. PhD thesis, University of Freiburg

  • Schneider K (1989) Untersuchungen zur Bindung kationischer Fluoreszenzfarbstoffe an Mitochondrienproteine. Photoaffinitätsmarkierung und Atmungskontrollexperimente. PhD thesis, University of Freiburg

  • Septinus M, Seiffert W, Zimmermann HW (1983) Über hydrophobe Acridinfarbstoffe zur Fluorochromierung von Mitochondrien in lebenden Zellen. 1. Mitteilung: Thermodynamische und spektroskopische Eigenschaften von 10-n-Alkyl-acridinorangechloriden. Histochemistry 79:443–456

    Google Scholar 

  • Septinus M, Berthold Th, Naujok A, Zimmermann HW (1985) Über hydrophobe Acridinfarbstoffe zur Fluorochromierung von Mitochondrien in lebenden Zellen. 3. Mitteilung: Spezifische Akkumulation des Farbstoffs NAO an die Mitochondrienmembranen von HeLa-Zellen durch hydrophobe Wechselwirkung. Hemmung der Atmungsaktivität, Veränderung der Ultrastruktur der Mitochondrien durch NAO. Intensivierung der Fluoreszenz vital gefärbter Mitochondrien in situ bei Bestrahlung. Histochemistry 82:51–66

    Google Scholar 

  • Seydel JK, Schaper K-J (1979) Chemische Struktur und biologische Aktivität von Wirkstoffen. Verlag Chemie, Weinheim New York

    Google Scholar 

  • Still W, Kahn M, Mitra A (1978) Rapid chromatographic technique for preparative separation with moderate resolution. J Org Chem 43:2923–2927

    Google Scholar 

  • Tomlinson E (1975) Chromatographic hydrophobic parameters in correlation analysis of structure-activity relationship. J Chromatogr 113:1–45

    Google Scholar 

  • Vogel M (1990) Spektroskopische Untersuchungen an Fluorochromen der Styrylpyridinium-Reihe. PhD thesis, University of Freiburg

  • Waggoner AS (1979) The use of cyanine dyes for the determination of membrane potentials in cells, organelles and vesicles. Methods Enzymol 55:689–695

    Google Scholar 

  • Waterbeemd H van de, Testa B (1987) The parameterization of lipophilicity and other structural properties in drug design. Adv Drug Res 16:85–225

    Google Scholar 

  • Winzek C, Plieninger P, Baumgärtel H (1987) An improved method to investigate staining kinetics in single cells. Histochemistry 86:421–426

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irion, G., Ochsenfeld, L., Naujok, A. et al. The concentration jump method. Histochemistry 99, 75–83 (1993). https://doi.org/10.1007/BF00268024

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00268024

Keywords

Navigation