Skip to main content
Log in

Lysophospholipid-mediated alterations in the calcium transport systems of skeletal and cardiac muscle sarcoplasmic reticulum

  • Original Article
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

The effects of various lysophospholipids on the calcium transport activity of sarcoplasmic reticulum (SR) from rabbit skeletal and canine cardiac muscles were examined. The lipids decreased calcium transport activity in both membrane types; the effectiveness being in the order lysoPC > lsyoPS, lysoPG > lysoPE. The maximum inhibition induced by lysoPC, lysoPG and lysoPS was greater than 85% of the normal Ca2+-transport rate. In cardiac SR lysoPE had a maximal inhibition of about 50%. Half maximal inhibition of calcium transport by lysoPC was achieved at 110 nmoles lysoPC/mg SR. At this concentration of lysoPC, the (Ca2+ + Mg2+)-ATPase and Ca2+-uptake activities were inhibited to the same extent (about 60%) in skeletal sarcoplasmic reticulum, while in cardiac sarcoplasmic reticulum, there was less than 20% inhibition of the Ca2+ + Mg2+-ATPase activity. Studies with EGTA-induced passive calcium efflux showed that up to 200 nmoles lysoPC/mg SR did not alter calcium permeability significantly in cardiac sarcoplasmic reticulum. In skeletal muscle membranes the lysophospholipid mediated decrease in calcium uptake correlated well with the increase in passive calcium efflux due to lysophosphatidylcholine. The difference in the lysophospholipid-induced effects on the sarcoplasmic reticulum from the two muscle types probably reflects variations in protein and other membrane components related to the respective calcium transport systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Shamoo AE, Ambudkar IS: Can J Physiol Pharmacol 62:9–22, 1984

    Google Scholar 

  2. Tada M, Yamamoto T, Tonomura Y Phys Rev 58:1–79, 1978

    Google Scholar 

  3. Fabiato A, Fabiato F: Ann Rev Phys 40:119–129, 1977

    Google Scholar 

  4. DeFoor PM, Levitsky D, Biryubona T, Fleischer S: Arch Biochem Biophys 200:96–205, 1980

    Google Scholar 

  5. Sumida M, Wang T, Mandel F, Froehlich JP, Schwartz A: J Biol Chem 253:8772–8777, 1980

    Google Scholar 

  6. Kirchberger MA, Tada M: J Biol Chem 251:725–729, 1976

    Google Scholar 

  7. Tada M, Katz AM: Ann Rev Physiol 44:401–423, 1982

    Google Scholar 

  8. Tada M, Inui M: J Mol Cell Cardiol 15:565–575, 1983

    Google Scholar 

  9. Nakamura M, Martonosi AN: J Biochem 89:21–28, 1981

    Google Scholar 

  10. Madden TD, Chapman D, Quinn PJ: 279:538–541, 1979

  11. Gomez-Fernandez JC, Goni FM, Bach D, Restall CJ, Chapman D: Biochem Biophys Acta 598:502–516, 1980

    Google Scholar 

  12. Messineo FC, Pinto PB, Katz AM: J Mol Cell Cardiol 12:725–732, 1980

    Google Scholar 

  13. Hildalgo C, Ikemoto N, Gergley J: J Biol Chem 25:4224–4232, 1976

    Google Scholar 

  14. Katz AM, Messineo FC: Circ Res 48:1–16, 1982

    Google Scholar 

  15. Adams RJ, Cohen DW, Gupte S, Johnson JD, Wallick ST, Wang J, Schwartz A: J Biol Chem 254:1204–12410, 1979

    Google Scholar 

  16. Eppes DE, Mandel F, Schwartz A: Cell Calcium 3:531–543, 1982

    Google Scholar 

  17. Dhalla NS, Das PK, Sharma GP: J Mol Cell Cardiol 10:363–385, 1978

    Google Scholar 

  18. Muir JR, Dhalla NS, Ortega JM, Olson RE: Circ Res 26:429–438, 1979

    Google Scholar 

  19. Naylor WJ, Stone J, Carson V, Chipperfield D: J Mol Cell Cardiol 2:125–143, 1971

    Google Scholar 

  20. Corr PB, Gross RW, Sobel BE: J Mol Cell Cardiol 14:619–626, 1982

    Google Scholar 

  21. Katz AM: J Mol Cell Cardiol 14:627–632, 1982

    Google Scholar 

  22. Harigaya S, Schwartz A: Circ Res 25:781–794, 1969

    Google Scholar 

  23. Bidlack JM, Shamoo AE: Biochim Biophys Acta 632:310–325, 1980

    Google Scholar 

  24. Thorne CJR: Techniques in Life Sciences, Biochemistry Elsevier/North Holland Netherlands, 1978, B1/1, B104

    Google Scholar 

  25. Ariki M, Shamoo AE: Biochim Biophys Acta 734:83–90, 1983

    Google Scholar 

  26. LeBel D, Poirer GG, Beaudoin AR: Anal Biochem 85:86–89, 1978

    Google Scholar 

  27. Van Winkle WB, Tate CA, Bick RJ, Entman ML: J Biol Chem 256:2268–2274, 1981

    Google Scholar 

  28. Campbell KP, Armstrong CF, Shamoo AE: Biochem Biophys Acta 602:97–116, 1980

    Google Scholar 

  29. Meissner G, Fleischer S: Biochem Biophys Acta 255:19–33, 1971

    Google Scholar 

  30. Inesi G, Millman M, Eleta S: J Mol Biol 81:483–504, 1973

    Google Scholar 

  31. Fanfarillo DT, Ambudkar IS, Trump BF, Shamoo AE: J Mol Cellular Cardiology Suppl (1) 16:16, 1984

    Google Scholar 

  32. Shamoo A, Ambudkar IS: In: Structure and Function of Sarcoplasmic Reticulum, Fleischer S, Tonomura Y (eds) pp. 577–590, Academic Press, NY. 1985

  33. Ambudkar IS, Fanfarillo DT, Shamoo AE: Membr Biochem 6:327–347, 1986

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ambudkar, I.S., Abdallah, ES. & Shamoo, A.E. Lysophospholipid-mediated alterations in the calcium transport systems of skeletal and cardiac muscle sarcoplasmic reticulum. Mol Cell Biochem 79, 81–89 (1988). https://doi.org/10.1007/BF00229401

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00229401

Key words

Navigation