Skip to main content
Log in

A comparison of the binding of nicotine and nornicotine stereoisomers to nicotinic binding sites in rat brain cortex

  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Summary

Both stereoisomers of nicotine and nornicotine were tested for their ability to competitively displace 3H(-)-nicotine and 3H-acetylcholine (in the presence of atropine), in rat cortex tissue. 3H-acetylcholine was displaced from two binding sites, super-high and high, by (+)-nicotine, (-)-nornicotine and (+)-nornicotine but from a high affinity site by (-)-nicotine. 3H-nicotine was displaced from two sites, high and low affinity by nicotine and nornicotine stereoisomers. The high-affinity 3H(-)-nicotine binding site showed similar binding characteristics to one of the sites labelled by 3H-acetylcholine. IC50 values showed (-)-nicotine to be 13 and 25-fold more potent than (+)-nicotine for displacing 3H-(-)nicotine and 3H-acetylcholine, respectively, but no difference was observed for nornicotine stereoisomers. While (-)-nicotine preferentially bound to the high affinity site of 3H-(-)-nicotine (+)-nicotine preferred the low affinity site. The study provides further evidence for multiple nicotine receptors in brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abood LG, Grassi S, Constanza M (1983) Binding of optically pure (-) 3H-nicotine to rat brain membranes. Febs Lett 157:147–149

    Google Scholar 

  • Abood LG, Grassi S, Noggle HD (1985) Comparison of the binding of optically pure (-)- and (+)-3H-nicotine to rat brain membranes. Neurochem Res 10:259–267

    Google Scholar 

  • Aceto MD, Martin BR, Uwaydah IM, May EL, Harris LS, Izazola-Conde C, Dewey WL, Bradshaw TJ, Vinced WC (1979) Optically pure (+)-nicotine from (±)-nicotine and biological comparisons with (-)-nicotine. J Med Chem 22:174–177

    Google Scholar 

  • Adem A, Nordberg A (1988) Nicotinic cholinergic receptor heterogeneity in mammalian brain. In: Rand MJ, Thurau K (eds). The pharmacology of nicotine. IRL Press, Oxford, pp 227–247

    Google Scholar 

  • Adem A, Synnergren B, Botros M, Ohman B, Winblad B, Nordberg A (1987) 3H-Acetylcholine nicotinic recognition sites in human brain: characterization of agonist binding. Neurosci Lett 83:298–302

    Google Scholar 

  • Adem A, Singh Jossan S, Sara V, Nordberg A (1988) Distribution of nicotinic receptors in human thalamus as visualized by 3H-nicotine and 3H-acetylcholine receptor autoradiography. J Neural Transm 73:77–83

    Google Scholar 

  • Barlow RB, Hamilton JT (1965) The stereospecificity of nicotine. Br J Pharmacol 25:206–212

    Google Scholar 

  • Clark MSG, Rand MJ Vanow S (1965) Comparison of pharmacological activity of nicotine and related alkaloids occurring in cigarette smoke. Arch Int Pharmacodyn 156:363–379

    Google Scholar 

  • Clarke PBS, Schwartz RD, Paul SM, Pert C, Pert A (1985) Nicotine binding in rat brain: autoradiographic comparison of 3H-acetylcholine, 3H-nicotine and 125I-alpha-bungarotoxin. J Neurosci 5:1307–1315

    Google Scholar 

  • Gorrod JW, Jenner P (1975) Metabolic N-oxidation product of atiphatic amines as potential mediators in amine pharmacology. Int J Clin Pharmacol Biopharm 12:180–185

    Google Scholar 

  • Härfstrand A, Adem A, Fuxe K, Agnati L, Andersson K, Nordberg A (1988) Distribution of nicotinic cholinergic receptors in the rat tel- and diencephalon: a quantitative receptor autoradiographical study using 3H-acetylcholine, 125I-bungarotoxin and 3H-nicotine. Acta Physiol Scand 132:1–14

    Google Scholar 

  • Hicks CS, Mackay ME, Sinclair DA (1947) The comparative pharmacology of the nor-nicotines. Aust J Exp Biol Med Sci 25:363–372

    Google Scholar 

  • Holmstedt B (1990) The use of enantiomers in biological studies: an historical review. In: Frank H, Holmstedt B, Testa B (eds) Chirality and biological activity. Alan R. Liss, New York, pp 1–14

    Google Scholar 

  • Ikushima S, Muramatsu I, Sakakibara Y, Yokatani K, Fujiwara M (1982) The effects of d-nicotine and 1-isomer on nicotinic receptors. J Pharmacol Exp Ther 222:463–470

    Google Scholar 

  • Jacob III P (1982) Resolution of (+)-5-bromonornicotine. Synthesis of (R)- and (S)-nornicotine of high enantiomeric purity. J Org Chem 47:4165–4167

    Google Scholar 

  • Jacob III P, Benowitz NL, Copeland JR, Risner ME, Cone EJ (1988) Disposition kinetics of nicotine and continine enantiomers in rabbits and beagle dogs. J Pharmaceut Sci 77:396–400

    Google Scholar 

  • Larsson C, Nordberg A (1985) Comparative analysis of nicotine-like receptor ligand interactions in rodent brain homogenates. J Neurochem 45:24–31

    Google Scholar 

  • Larsson C, Lundberg PA, Halen A, Adem A, Nordberg A (1987) In vitro binding of 3H-acetylcholine to nicotinic receptors in rodent and human brain. J Neural Transm 69:3–18

    Google Scholar 

  • Martin BR, Aceto MD (1981) Nicotine binding sites and their localization in the central nervous system. Neurosci. Biobehav Rev 5:473–478

    Google Scholar 

  • Meltzer LT, Rosecrans JA, Aceto MD, Harris LS (1980) Discriminative stimulus properties of the optical isomers of nicotine. Psychopharmacol 68:283–286

    Google Scholar 

  • Nordberg A, Winblad B (1981) Cholinergic receptor in human hippocampus: regional distribution and variance with age. Life Sci 29:1937–1944

    Google Scholar 

  • Nordberg A, Adem A, Nilsson L, Romanelli L, Zhang X (1988) Heterogenous cholinergic nicotinic receptors in the CNS. In: Nicotinic acetylcholine receptors in the nervous system. (Eds. Clementi et al.) Springer Verlag ASI Series Vol H25, pp 331–350

  • Nordberg A, Hartvig P, Lundqvist H, Antoni G, Ulin J, Långström B (1989) Uptake and regional distribution of (+) (R)- and (-) (S)-N-methyl-11C-nicotine in the brains of Rhesus monkey — an attempt to study nicotinic receptors in vivo. J Neural Transm (P-D-Sect) 1:195–205

    Google Scholar 

  • Nordberg A, Hartvig P, Lilja A, Viitanen M, Amberla K, Lundqvist H, Andersson Y, Ulin J, Winblad B, Långström B (1990a) Decreased uptake and binding of 11C-nicotine in brain of Alzheimer patients as visualized by positron emission tomography. J Neural Transm (P-D-Sect) in press

  • Nordberg A, Hartvig P, Lundqvist H, Lilja A, Viitanen M, Amberla K, Ulin J, Winblad B, Långström B (1990b) Visualization of cholinergic tracers in Alzheimer brains in vivo by positron emission tomography. In: Becker RE, Giacobini E (Eds) Current research in Alzheimer therapy II: early diagnosis. Taylor & Francis, New York, pp 329–338

    Google Scholar 

  • Nybäck H, Nordberg A, Långström B, Halldin C, Hartvig P, Åhlin A, Swan C-G, Sedvall G (1989) Attempts to visualize nicotinic receptors in the brain of monkey and man by positron emission tomography. In: Nordberg A, Fuxe K, Holmstedt B, Sundwall A (eds) Nicotinic receptors in the CNS — their role in synaptic transmission. Progress in Brain Res, Elsevier, 79, pp 313–319

  • Pictet A, Rotschy A (1904) Synthese des Nicotins. Ber Chem Ges 371:1225–1235

    Google Scholar 

  • Reavill C, Jenner P, Kumar R, Stolerman IP (1988) High affinity binding of 3H-(-)-nicotine to rat brain membranes and its inhibition by analogues of nicotine. Neuropharmacology 27:235–241

    Google Scholar 

  • Risner ME, Cone EJ, Benowitz NL, Jacob III P (1988) Effects of the stereoisomers of nicotine and nornicotine on schedule-controlled responding and physiological parameters of dogs. J Pharmacol Exp Ther 244:807–813

    Google Scholar 

  • Saitoh F, Noma M, Kawashima N (1985) The alkaloid contents of sixty nicotiana species. Phytochemistry 24:477–480

    Google Scholar 

  • Schwartz RD, McGee R, Kellar KJ (1982) Nicotinic cholinergic receptors labelled by [3H]acetylcholine in rat brain. Mol Pharmacol 22:56–62

    Google Scholar 

  • Sheridan RP, Nilakantan R, Dixon JS, Venkataraghavan R (1986) The emsemble approach to distance geometry: application to the nicotinic pharmacophore. J Med Chem 29:899–906

    Google Scholar 

  • Sloan, JW, Todd GD, Martin WR (1984) Nature of nicotine binding to rat brain P2 fraction. Pharmacol Biochem Behav 20:899–909

    Google Scholar 

  • Sloan JW, Martin WR, Hernandez J, Hook R (1985a) Binding characteristics of (-)- and (+)-nicotine to the rat brain P2 fraction. Pharmacol Biochem Behav 23:987–993

    Google Scholar 

  • Sloan JW, Martin WR, Hook R, Bostwick M, Howell A, Smith WT (1985b) Stereospecificity of 2-methylpeperidine binding to a nicotinic up-regulatory site in the rat brain P2 preparation. Life Sci 37:1367–1372

    Google Scholar 

  • Wonnacott S (1987) Brain nicotinic binding sites. Hum Toxicol 6:343–353

    Google Scholar 

  • Zhang X, Stjernlöf P, Adem A, Nordberg A (1987) Anatoxin-a potent ligand for nicotinic cholinergic receptors in rat brain. Eur J Pharmacol 135:457–458

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Send offprint requests to A. Nordberg at the above address

Rights and permissions

Reprints and permissions

About this article

Cite this article

Copeland, J.R., Adem, A., Jacob, P. et al. A comparison of the binding of nicotine and nornicotine stereoisomers to nicotinic binding sites in rat brain cortex. Naunyn-Schmiedeberg's Arch Pharmacol 343, 123–127 (1991). https://doi.org/10.1007/BF00168598

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00168598

Key words

Navigation