Skip to main content

High Density Lipoprotein Structure–Function and Role in Reverse Cholesterol Transport

  • Chapter
  • First Online:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 51))

Abstract

High density lipoprotein (HDL) possesses important anti-atherogenic properties and this review addresses the molecular mechanisms underlying these functions. The structures and cholesterol transport abilities of HDL particles are determined by the properties of their exchangeable apolipoprotein (apo) components. ApoA-I and apoE, which are the best characterized in structural terms, contain a series of amphipathic α-helical repeats. The helices located in the amino-terminal two-thirds of the molecule adopt a helix bundle structure while the carboxy-terminal segment forms a separately folded, relatively disorganized, domain. The latter domain initiates lipid binding and this interaction induces changes in conformation; the α-helix content increases and the amino-terminal helix bundle can open subsequently. These conformational changes alter the abilities of apoA-I and apoE to function as ligands for their receptors. The apoA-I and apoE molecules possess detergent-like properties and they can solubilize vesicular phospholipid to create discoidal HDL particles with hydrodynamic diameters of ~10 nm. In the case of apoA-I, such a particle is stabilized by two protein molecules arranged in an anti-parallel, double-belt, conformation around the edge of the disc. The abilities of apoA-I and apoE to solubilize phospholipid and stabilize HDL particles enable these proteins to be partners with ABCA1 in mediating efflux of cellular phospholipid and cholesterol, and the biogenesis of HDL particles. ApoA-I-containing nascent HDL particles play a critical role in cholesterol transport in the circulation whereas apoE-containing HDL particles mediate cholesterol transport in the brain. The mechanisms by which HDL particles are remodeled by lipases and lipid transfer proteins, and interact with SR-BI to deliver cholesterol to cells, are reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ANS:

8-anilino-1-napthalenesulfonic acid

AP:

acute phase

apo:

apolipoprotein

CE:

cholesterol ester

CETP:

cholesteryl ester transfer protein

DMPC:

dimyristoyl PC

EL:

endothelial lipase

FC:

free (unesterified) cholesterol

HDL:

high density lipoprotein

HL:

hepatic lipase

LCAT:

lecithin-cholesterol acyltransferase

LDL:

low density lipoprotein

LUV:

large unilamellar vesicle

MLV:

multilamellar vesicle

PC:

phosphatidylcholine

PL:

phospholipid

PLTP:

phospholipid transfer protein

RCT:

reverse cholesterol transport

SAA:

serum amyloid A

SUV:

small unilamellar vesicle

TAG:

triacylglycerol

VLDL:

very low density lipoprotein

References

  • Abe-Dohmae, S., Kato, K. H., Kumon, Y., Hu, W., Ishigami, H., Iwamoto, N., Okazaki, M., Wu, C. A., Ueda, K. and Yokoyama, S., 2006, Serum amyloid A generates high density lipoprotein with cellular lipid in an ABCA1- or ABCA7-dependent manner. J. Lipid Res. 47: 1542–1550.

    CAS  PubMed  Google Scholar 

  • Acharya, P., Segall, M. L., Zaiou, M., Morrow, J. A., Weisgraber, K., Phillips, M. C., Lund-Katz, S. and Snow, J. W., 2002, Comparison of the stabilities and unfolding pathways of human apolipoprotein E isoforms by differential scanning calorimetry and circular dichroism. Biochim. Biophys. Acta 1584: 9–19.

    CAS  PubMed  Google Scholar 

  • Acton, S., Rigotti, A., Landschulz, K. T., Xu, S., Hobbs, H. H. and Krieger, M., 1996, Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 271: 518–520.

    CAS  PubMed  Google Scholar 

  • Adorni, M. P., Zimetti, F., Billheimer, J. T., Wang, N., Rader, D. J., Phillips, M. C. and Rothblat, G. H., 2007, The roles of different pathways in the release of cholesterol from macrophages, J. Lipid Res. 48: 2453–2462.

    CAS  PubMed  Google Scholar 

  • Aggerbeck, L. P., Wetterau, J. R., Weisgraber, K. H., Wu, C. S. C. and Lindgren, F. T., 1988, Human apolipoprotein E3 in aqueous solution. II. Properties of the amino- and carboxyl-terminal domains. J. Biol. Chem. 263: 6249–6258.

    CAS  PubMed  Google Scholar 

  • Ajees, A. A., Anantharamaiah, G. M., Mishra, V. K., Hussain, M. M. and Murthy, S., 2006, Crystal structure of human apolipoprotein A-I: Insights into its protective effect against cardiovascular diseases. Proc. Natl. Acad. Sci. USA 103: 2126–2131.

    CAS  PubMed  Google Scholar 

  • Alder-Baerens, N., Muller, P., Pohl, A., Korte, T., Hamon, Y., Chimini, G., Pomorski, T., and Herrmann, A., 2005, Headgroup-specific exposure of phospholipids in ABCA1-expressing cells. J. Biol. Chem. 280: 26321–26329.

    CAS  PubMed  Google Scholar 

  • Andrews, A. L., Atkinson, D., Barratt, M. D., Finer, E. G., Hauser, H., Henry, R., Leslie, R. B., Owens, N. L., Phillips, M. C., and Robertson, R. N., 1976, Interaction of apoprotein from porcine high-density lipoprotein with dimyristoyl lecithin. 2. Nature of lipid-protein interaction. Eur. J. Biochem. 64: 549–563.

    CAS  PubMed  Google Scholar 

  • Ansell, B. J., Fonarow, G. C., and Fogelman, A. M., 2007, The paradox of dysfunctional high-density lipoprotein. Curr. Opin. Lipidol. 18: 427–434.

    CAS  PubMed  Google Scholar 

  • Arnulphi, C., Jin, L., Tricerri, M. A., and Jonas, A., 2004, Enthalpy-driven apolipoprotein A-I and lipid bilayer interaction indicating protein penetration upon lipid binding. Biochemistry 43: 12258–12264.

    CAS  PubMed  Google Scholar 

  • Atkinson, D., Smith, H. M., Dickson, J., and Austin, J. P., 1976, Interaction of apoprotein from porcine high-density lipoprotein with dimyristoyl lecithin. 1. The structure of the complexes. Eur. J. Biochem. 64: 541–547.

    CAS  PubMed  Google Scholar 

  • Badellino, K. O. and Rader, D. J., 2004, The role of endothelial lipase in high-density lipoprotein metabolism. Curr. Opin. Lipidol. 19: 392–395.

    Google Scholar 

  • Barbier, A., Clement-Collin, V., Dergunov, A. D., Visvikis, A., Siest, G., and Aggerbeck, L. P., 2006, The structure of human apolipoprotein E2, E3 and E4 in solution 1. Tertiary and quaternary structure. Biophys. Chem. 20: 158–169.

    Google Scholar 

  • Barratt, M. D., Badley, R. A., and Leslie, R. B., 1974, The interaction of apoprotein from porcine high-density lipoprotein with dimyristoyl phosphatidylcholine. Eur. J. Biochem. 48: 595–601.

    CAS  PubMed  Google Scholar 

  • Bausserman, L. L., Herbert, P. N., Forte, T., Klausner, R. D., McAdam, K. P. W. J., Osborne, J. C., Jr., and Rosseneu, M., 1983. Interaction of the serum amyloid A proteins with phospholipid. J. Biol. Chem. 258: 10681–10688.

    CAS  PubMed  Google Scholar 

  • Behling Agree, A. K., Tricerri, M. A., Arnvig-McGuire, K., Tian, S. M., and Jonas, A., 2002, Folding and stability of the C-terminal half of apolipoprotein A-I examined with a Cys-specific fluorescence probe. Biochim. Biophys. Acta 1594: 286–296.

    CAS  PubMed  Google Scholar 

  • Braun, N. A., Mohler, P. J., Weisgraber, K. H., Hasty, A. H., Linton, M. F., Yancey, P. G., Su, Y. R., Fazio, S., and Swift, L. L., 2006, Intracellular trafficking of recycling apolipoprotein E in Chinese hamster ovary cells. J. Lipid Res. 47: 1176–1186.

    CAS  PubMed  Google Scholar 

  • Brouillette, C. G., Anantharamaiah, G. M., Engler, J. A., and Borhani, D. W., 2001, Structural models of human apolipoprotein A-I: a critical analysis and review. Biochim. Biophys. Acta 1531: 4–46.

    CAS  PubMed  Google Scholar 

  • Brouillette, C. G., Dong, W. J., Yang, Z. W., Ray, M. J., Protasevich, I. I., Cheung, H. C., and Engler, J. A., 2005, Forster resonance energy transfer measurements are consistent with a helical bundle model for lipid-free apolipoprotein A-I. Biochemistry 44: 16413–16425.

    CAS  PubMed  Google Scholar 

  • Cai, L., de Beer, M. C., de Beer, F. C., and van der Westhuijzen, D. R., 2005, Serum amyloid A is a ligand for scavenger receptor class B type I and inhibits high density lipoprotein binding and selective lipid uptake. J. Biol. Chem. 280: 2954–2961.

    CAS  PubMed  Google Scholar 

  • Chambenoit, O., Hamon, Y., Margue, D., Rigneult, H., Rosseneu, M., and Chimini, G., 2001, Specific docking of apolipoprotein A-I at the cell surface requires a functional ABCA1 transporter. J. Biol. Chem. 276: 9955–9960.

    CAS  PubMed  Google Scholar 

  • Chau, P., Nakamura, Y., Fielding, C. J., and Fielding, P. E., 2006, Mechanism of prebeta-HDL formation and activation. Biochemistry 45: 3981–3987.

    CAS  PubMed  Google Scholar 

  • Choy, N., Raussens, V., and Narayanaswami, V., 2003, Inter-molecular coiled-coil formation in human apolipoprotein E C-terminal domain. J. Mol. Biol. 334: 527–539.

    CAS  PubMed  Google Scholar 

  • Clay, M. A., Newnham, H. H., and Barter, P. J., 1991, Hepatic lipase promotes a loss of apolipoprotein A-I from triglyceride-enriched human high density lipoproteins during incubation in vitro. Arterioscler. Throm. 11: 415–422.

    CAS  Google Scholar 

  • Clay, M. A., Pyle, D. H., Rye, K. A., and Barter, P. J., 2000, Formation of spherical, reconstituted high density lipoproteins containing both apolipoproteins A-I and A-II is mediated by lecithin: cholesterol acyltransferase. J. Biol. Chem. 275: 9019–9025.

    CAS  PubMed  Google Scholar 

  • Connelly, M. A., Klein, S. M., Azhar, S., Abumrad, N. A., and Williams, D. L., 1999, Comparison of class B scavenger receptors, CD36 and scavenger receptor BI (SR-BI), shows that both receptors mediate high density lipoprotein-cholesteryl ester selective uptake but SR-BI exhibits a unique enhancement of cholesteryl ester uptake. J. Biol. Chem. 274: 41–47.

    CAS  PubMed  Google Scholar 

  • Connelly, M. A., Llera-Moya, M., Monzo, P., Yancey, P., Drazul, D., Stoudt, G., Fournier, N., Klein, S. M., Rothblat, G., and Williams, D. L., 2001, Analysis of chimeric receptors shows that multiple distinct functional activities of scavenger receptor, class B, type I (SR-BI), are localized to the extracellular receptor domain. Biochemistry 40: 5249–5259.

    CAS  PubMed  Google Scholar 

  • Connelly, M. A. and Williams, D. L., 2004, Scavenger receptor BI: A scavenger receptor with a mission to transport high density lipoprotein lipids. Curr. Opin. Lipidol. 15: 287–295.

    CAS  PubMed  Google Scholar 

  • Corder, E. H., Saunders, A. M., Risch, N. J., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Jr., Rimmler, J. B., Locke, P. A., Conneally, P. M., Schmader, K. E., Small, G. W., Roses, A. D., Haines, J. L., and Pericak-Vance, M. A., 1994, Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer’s disease. Nat. Genet. 7: 180–184.

    CAS  PubMed  Google Scholar 

  • Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Small, G. W., Roses, A. D., Haines, G. L., and Pericak-Vance, M. A., 1993, Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261: 921–923.

    CAS  PubMed  Google Scholar 

  • Cuchel, M. and Rader, D. J., 2006, Macrophage reverse cholesterol transport. Key to the regression of atherosclerosis? Circulation 113: 2548–2555.

    PubMed  Google Scholar 

  • Davidson, W. S., Arnvig-McGuire, K., Kennedy, A., Kosman, J., Hazlett, T., and Jonas, A., 1999, Structural organization of the N-terminal domains of apolipoprotein A-I: Studies of tryptophan mutants. Biochemistry 38: 14387–14395.

    CAS  PubMed  Google Scholar 

  • Davidson, W. S., Hazlett, T., Mantulin, W. M., and Jonas, A. 1996, The role of apolipoprotein AI domains in lipid binding. Proc. Natl. Acad. Sci. USA 93: 13605–13610.

    CAS  PubMed  Google Scholar 

  • Davidson, W. S. and Silva, R. A. G. 2005, Apolipoprotein structural organization in high density lipoproteins: Belts, bundles, hinges and hairpins. Curr. Opin. Lipidol. 16: 295–300.

    CAS  PubMed  Google Scholar 

  • Davidson, W. S. and Thompson, T. B. 2007, The structure of apolipoprotein A-I in high density lipoproteins. J. Biol. Chem. 282: 22249–22253.

    CAS  PubMed  Google Scholar 

  • Davignon, J., Gregg, R. E., and Sing, C. F. 1988, Apolipoprotein E polymorphism and atherosclerosis. Arteriosclerosis 8: 1–21.

    CAS  PubMed  Google Scholar 

  • Dawson, R. J. P. and Locher, K. P. 2006, Structure of a bacterial multidrug ABC transporter, Nature 443: 180–185.

    CAS  PubMed  Google Scholar 

  • de Beer, M. C., Durbin, D. M., Cai, L., Jonas, A., and de Beer, F. C. 2001a, Apolipoprotein A-I conformation markedly influences HDL interaction with scavenger receptor BI. J. Lipid Res. 42: 309–313.

    PubMed  Google Scholar 

  • de Beer, M. C., Durbin, D. M., Cai, L., Mirocha, N., Jonas, A., Webb, N. R., de Beer, F. C., and van der Westhuyzen, D. R. 2001b, Apolipoprotein A-II modulates the binding and selective lipid uptake of reconstituted high density lipoprotein by scavenger receptor BI. J. Biol. Chem. 276: 15832–15839.

    PubMed  Google Scholar 

  • Dean, M., Hamon, Y., and Chimini, G. 2001, The human ATP-binding cassette (ABC) transporter superfamily. J. Lipid Res. 42: 1007–1017.

    CAS  PubMed  Google Scholar 

  • Denis, M., Landry, Y. D., and Zha, X. 2008, ATP-binding cassette A1-mediated lipidation of apolipoprotein A-I occurs at the plasma membrane and not in the endocytic compartments. J. Biol. Chem. 283: 16178–16186.

    CAS  PubMed  Google Scholar 

  • Dietschy, J. M. and Turley, S. D. 2001, Cholesterol metabolism in the brain. Curr. Opin. Lipidol. 12: 105–112.

    CAS  PubMed  Google Scholar 

  • Dong, L. M., Parkin, S., Trakhanov, S. D., Rupp, B., Simmons, T., Arnold, K. S., Newhouse, Y. M., Innerarity, T. L., and Weisgraber, K. H. 1996, Novel mechanism for defective receptor binding of apolipoprotein E2 in type III hyperlipoproteinemia. Nat. Struct. Biol. 3: 718–722.

    CAS  PubMed  Google Scholar 

  • Dong, L. M. and Weisgraber, K. H. 1996, Human apolipoprotein E4 domain interaction. Arginine 61 and glutamic acid 255 interact to direct the preference for very low density lipoproteins. J. Biol. Chem. 271: 19053–19057.

    CAS  PubMed  Google Scholar 

  • Dong, L. M., Wilson, C., Wardell, M. R., Simmons, T., Mahley, R. W., Weisgraber, K. H., and Agard, D. A. 1994, Human apolipoprotein E. Role of arginine 61 in mediating the lipoprotein preferences of the E3 and E4 isoforms. J. Biol. Chem. 269: 22358–22365.

    CAS  PubMed  Google Scholar 

  • Donovan, J. M., Benedek, G. B., and Carey, M. C. 1987, Self-association of human apolipoproteins A-I and A-II and interactions of apolipoprotein A-I with bile salts: Quasi-elastic light scattering studies. Biochemistry 26: 8116–8125.

    CAS  PubMed  Google Scholar 

  • Duong, P. T., Collins, H. L., Nickel, M., Lund-Katz, S., Rothblat, G. H., and Phillips, M. C. 2006, Characterization of nascent HDL particles and microparticles formed by ABCA1-mediated efflux of cellular lipids to apoA-I. J. Lipid Res. 47: 832–843.

    CAS  PubMed  Google Scholar 

  • Duong, P. T., Weibel, G. L., Lund-Katz, S., Rothblat, G. H., and Phillips, M. C. 2008, Characterization and properties of pre beta-HDL particles formed by ABCA1-mediated cellular lipid efflux to apoA-I. J. Lipid Res. 49: 1006–1014.

    CAS  PubMed  Google Scholar 

  • Eckhardt, E. R. M., Cai, L., Sun, B., Webb, N. R., and van der Westhuyzen, D. R. 2004, High density lipoprotein uptake by scavenger receptor SR-BII. J. Biol. Chem. 279: 14372–14381.

    CAS  PubMed  Google Scholar 

  • Fan, D., Li, Q., Korando, L., Jerome, W. G., and Wang, J. 2004, A monomeric human apolipoprotein E carboxyl-terminal domain. Biochemistry 43: 5055–5064.

    CAS  PubMed  Google Scholar 

  • Fang, Y., Gursky, O., and Atkinson, D. 2003, Structural studies of N- and C-terminally truncated human apolipoprotein A-I. Biochemistry 42: 6881–6890.

    CAS  PubMed  Google Scholar 

  • Faulkner, L. E., Panagotopulos, S. E., Johnson, J. D., Woollett, L. A., Hui, D. Y., Witting, S. R., Maiorano, J. N., and Davidson, W. S. 2008, An analysis of the role of a retroendocytosis pathway in ABCA1-mediated cholesterol efflux from macrophages. J. Lipid Res. 49: 1322–1332.

    CAS  PubMed  Google Scholar 

  • Fazio, S., Linton, M. F., and Swift, L. L. 2000, The cell biology and physiologic relevance of apoE recycling. Trends Cardiovasc. Med. 10: 23–30.

    CAS  PubMed  Google Scholar 

  • Fenske, S. A., Yesilaltay, A., Pal, R., Daniels, K., Rigotti, A., Krieger, M., and Kocher, O. 2008, Overexpression of the PDZ1 domain of PDZK1 blocks the activity of hepatic scavenger receptor, class B, type I (SR-BI) by altering its abundance and cellular localization. J. Biol. Chem. 283: 22097–22104.

    CAS  PubMed  Google Scholar 

  • Fielding, C. J. and Fielding, P. E. 1995, Molecular physiology of reverse cholesterol transport. J. Lipid Res. 36: 211–228.

    CAS  PubMed  Google Scholar 

  • Fisher, C. A. and Ryan, R. O. 1999, Lipid binding-induced conformational changes in the N-terminal domain of human apolipoprotein E. J. Lipid Res. 40: 93–99.

    CAS  PubMed  Google Scholar 

  • Fitzgerald, M. L., Morris, A. L., Rhee, J. S., Andersson, L. P., Mendez, A. J., and Freeman, M. W. 2002, Naturally occurring mutations in the largest extracellular loops of ABCA1 can disrupt its direct interaction with apolipoprotein A-I. J. Biol. Chem. 277: 33178–33187.

    CAS  PubMed  Google Scholar 

  • Forte, T. M., Nichols, A. V., Gong, E. L., Lux, S., and Levy, R. I. 1971, Electron microscopic study on reassembly of plasma high density apoprotein with various lipids. Biochim. Biophys. Acta 248: 381–386.

    CAS  PubMed  Google Scholar 

  • Frank, P. G. and Marcel, Y. L. 2000, Apolipoprotein A-I: Structure-function relationships. J. Lipid Res. 41: 853–872.

    CAS  PubMed  Google Scholar 

  • Gazzara, J. A., Phillips, M. C., Lund-Katz, S., Palgunachari, M. N., Segrest, J. P., Anantharamaiah, G. M., and Snow, J. W. 1997, Interaction of class A amphipathic helical peptides with phospholipid unilamellar vesicles. J. Lipid Res. 38: 2134–2146.

    CAS  PubMed  Google Scholar 

  • Gelissen, I. C., Harris, M., Rye, K. A., Quinn, C., Brown, A. J., Kockx, M., Cartland, S., Packianathan, M., Kritharides, L., and Jessup, W. 2008, ABCA1 and ABCG1 synergize to mediate cholesterol export to apoA-I. Arterioscler. Thromb. Vasc. Biol. 26: 534–540.

    Google Scholar 

  • Getz, G. S. and Reardon, C. A. 2009, Apoprotein E as a lipid transport and signaling protein in the blood, liver, and artery wall. J. Lipid Res. 50: S156–S161.

    Google Scholar 

  • Gillotte, K. L., Davidson, W. S., Lund-Katz, S., Rothblat, G. H., and Phillips, M. C. 1998, Removal of cellular cholesterol by pre-beta-HDL involves plasma membrane microsolubilization. J. Lipid Res. 39: 1918–1928.

    CAS  PubMed  Google Scholar 

  • Gillotte, K. L., Zaiou, M., Lund-Katz, S., Anantharamaiah, G. M., Holvoet, P., Dhoest, A., Palgunachari, M. N., Segrest, J. P., Weisgraber, K. H., Rothblat, G. H., and Phillips, M. C. 1999, Apolipoprotein-mediated plasma membrane microsolubilization. J. Biol. Chem. 274: 2021–2028.

    CAS  PubMed  Google Scholar 

  • Gillotte-Taylor, K. L., Nickel, M., Johnson, W. J., Francone, O., Holvoet, P., Lund-Katz, S., Rothblat, G. H., and Phillips, M. C. 2002, Effects of enrichment of fibroblasts with unesterified cholesterol on the efflux of cellular lipids to apolipoprotein A-I. J. Biol. Chem. 277: 11811–11820.

    CAS  PubMed  Google Scholar 

  • Gong, E., Tan, C. S., Shoukry, M. I., Rubin, E. M., and Nichols, A. V. 1994, Structural and functional properties of human and mouse apolipoprotein A-I. Biochim. Biophys. Acta 1213: 335–342.

    CAS  PubMed  Google Scholar 

  • Gu, X., Kozarsky, K., and Krieger, M. 2000, Scavenger receptor class B, type I-mediated [3-H]cholesterol efflux to high and low density lipoproteins is dependent on lipoprotein binding to the receptor. J. Biol. Chem. 275: 29993–30001.

    CAS  PubMed  Google Scholar 

  • Gu, X., Trigatti, B., Xu, S., Acton, S., Babitt, J., and Krieger, M. 1998, The efficient cellular uptake of high density lipoprotein lipid via scavenger receptor class B type I requires not only receptor-mediated surface binding but also receptor-specific lipid transfer mediated by its extracellular domain. J. Biol. Chem. 273: 26338–26348.

    CAS  PubMed  Google Scholar 

  • Gursky, O. and Atkinson, D. 1996, Thermal unfolding of human high-density apolipoprotein A-I: implications for a lipid-free molten globular state. Proc. Natl. Acad. Sci. USA 93: 2991–2995.

    CAS  PubMed  Google Scholar 

  • Harder, C. J., Vassiliou, G., McBride, H. M., and McPherson, R. 2006, Hepatic SR-BI-mediated cholesteryl ester selective uptake occurs with unaltered efficiency in the absence of cellular energy. J. Lipid Res. 47: 492–503.

    CAS  PubMed  Google Scholar 

  • Hasty, A. H., Plummer, M. R., Weisgraber, K. H., Linton, M. F., Fazio, S., and Swift, L. L. 2005, The recycling of apolipoprotein E in macrophages: influence of HDL and apolipoprotein A-I. J. Lipid Res. 46: 1433–1439.

    CAS  PubMed  Google Scholar 

  • Hatters, D. M., Budamagunta, M. S., Voss, J. C., and Weisgraber, K. H. 2005, Modulation of apolipoprotein E structure by domain interaction. Differences in lipid-bound and lipid-free forms. J. Biol. Chem. 280: 34288–34295.

    CAS  PubMed  Google Scholar 

  • Hatters, D. M., Peters-Libeu, C. A., and Weisgraber, K. H. 2006, Apolipoprotein E structure: Insights into function. Trends Biochem. Sci. 31: 445–454.

    CAS  PubMed  Google Scholar 

  • Hatters, D. M., Voss, J. C., Budamagunta, M. S., Newhouse, Y. N., and Weisgraber, K. H. 2009, Insight on the molecular envelope of lipid-bound apolipoprotein E from electron paramagnetic resonance spectroscopy. J. Mol. Biol. 386: 261–271.

    CAS  PubMed  Google Scholar 

  • Hauser, H., Henry, R., Leslie, R. B., and Stubbs, J. M. 1974, The interaction of apoprotein from porcine high-density lipoprotein with dimyristoyl phosphatidylcholine. Eur. J. Biochem. 48: 583–594.

    CAS  PubMed  Google Scholar 

  • Heeren, J., Beisiegel, U., and Grewal, T. 2006, Apolipoprotein E recycling. Implications for dyslipidemia and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 26: 442–448.

    CAS  PubMed  Google Scholar 

  • Hirch-Reinshagen, V. and Wellington, C. L. 2007, Cholesterol metabolism, apolipoprotein E, adenosine triphosphate-binding cassette transporters, and Alzheimer’s disease. Curr. Opin. Lipidol. 18: 325–332.

    Google Scholar 

  • Hirz, R. and Scanu, A. M. 1970, Reassembly in vitro of a serum high-density lipoprotein. Biochim. Biophys. Acta 207: 364–367.

    CAS  PubMed  Google Scholar 

  • Homanics, G. E., de Silva, H. V., Osada, J., Zhang, S. H., Wong, H., Borensztajn, J., and Maeda, N. 1995, Mild dyslipidemia in mice following targeted inactivation of the hepatic lipase gene. J. Biol. Chem. 270: 2974–2980.

    CAS  PubMed  Google Scholar 

  • Huang, Z. H., Fitzgerald, M. L., and Mazzone, T. 2006, Distinct cellular loci for the ABCA1-dependent and ABCA1-independent lipid efflux mediated by endogenous apolipoprotein E expression. Arterioscler. Thromb. Vasc. Biol. 26: 157–162.

    PubMed  Google Scholar 

  • Huuskonen, J., Olkkonen, V. M., Jauhiainen, M., and Ehnholm, C. 2001, The impact of phospholipid transfer protein (PLTP) on HDL metabolism. Atherosclerosis 155: 269–281.

    CAS  PubMed  Google Scholar 

  • Innerarity, T. L., Pitas, R. E., and Mahley, R. W. 1979, Binding of arginine-rich (E) apoprotein after recombination with phospholipid vesicles to the low density lipoprotein receptors of fibroblasts. J. Biol. Chem. 254: 4186–4190.

    CAS  PubMed  Google Scholar 

  • Jahangiri, A., de Beer, M. C., Noffsinger, V., Tannock, L. R., Ramaiah, C., Webb, N. R., van der Westhuijzen, D. R., and de Beer, F. C. 2009, HDL remodeling during the acute phase response. Arterioscler. Thromb. Vasc. Biol. 29: 261–267.

    CAS  PubMed  Google Scholar 

  • Jahangiri, A., Rader, D. J., Marchadier, D., Curtiss, L. K., Bonnet, D. J., and Rye, K. A. 2005, Evidence that endothelial lipase remodels high density lipoproteins without mediating the dissociation of apolipoprotein A-I. J. Lipid Res. 46: 896–903.

    CAS  PubMed  Google Scholar 

  • Jaye, M. and Krawiec, J. 2004, Endothelial lipase and HDL metabolism. Curr. Opin. Lipidol. 15: 183–189.

    CAS  PubMed  Google Scholar 

  • Jessup, W., Gelissen, I. C., Gaus, K., and Kritharides, L. 2006, Roles of ATP binding cassette transporters A1 and G1, scavenger receptor BI and membrane lipid domains in cholesterol export from macrophages. Curr. Opin. Lipidol. 17: 247–257.

    CAS  PubMed  Google Scholar 

  • Ji, Y., Jian, B., Wang, N., Sun, Y., Llera Moya, M., Phillips, M. C., Rothblat, G. H., Swaney, J. B., and Tall, A. R. 1997, Scavenger receptor BI promotes high density lipoprotein-mediated cellular cholesterol efflux. J. Biol. Chem. 272: 20982–20985.

    CAS  PubMed  Google Scholar 

  • Jian, B., Llera-Moya, M., Ji, Y., Wang, N., Phillips, M. C., Swaney, J. B., Tall, A. R., and Rothblat, G. H. 1998, Scavenger receptor class B type I as a mediator of cellular cholesterol efflux to lipoproteins and phospholipid acceptors. J. Biol. Chem. 273: 5599–5606.

    CAS  PubMed  Google Scholar 

  • Jonas, A. 1992, Lipid-binding properties of apolipoproteins, in Structure and Function of Apolipoproteins. M. Rosseneu, ed., CRC Press, Boca Raton, pp. 217–250.

    Google Scholar 

  • Jonas, A. 2000, Lecithin cholesterol acyltransferase. Biochim. Biophys. Acta 1529: 245–256.

    CAS  PubMed  Google Scholar 

  • Jonas, A. and Drengler, S. M. 1980, Kinetics and mechanism of apolipoprotein A-I interaction with L-alpha-dimyristoylphosphatidylcholine vesicles. J. Biol. Chem. 255: 2190–2194.

    CAS  PubMed  Google Scholar 

  • Jonas, A., Drengler, S. M., and Patterson, B. W. 1980, Two types of complexes formed by the interaction of apolipoprotein A-I with vesicles of L-alpha-dimyristoylphosphatidylcholine. J. Biol. Chem. 255: 2183–2189.

    CAS  PubMed  Google Scholar 

  • Jonas, A., Krajnovich, D. J., and Patterson, B. W. 1977, Physical properties of isolated complexes of human and bovine A-I apolipoproteins with L-alpha-dimyristoyl phosphatidylcholine. J. Biol. Chem. 252: 2200–2205.

    CAS  PubMed  Google Scholar 

  • Jonas, A. and Phillips, M. C. 2008, Lipoprotein Structure, in Biochemistry of Lipids, Lipoproteins and Membranes. 5th edn., D. E. Vance and J. E. Vance, eds., Elsevier, pp. 485–506.

    Google Scholar 

  • Kellner-Weibel, G., Llera-Moya, M., Connelly, M. A., Stoudt, G., Christian, A. E., Haynes, M. P., Williams, D. L., and Rothblat, G. H. 2000, Expression of scavenger receptor BI in COS-7 cells alters cholesterol content and distribution. Biochemistry 39: 221–229.

    CAS  PubMed  Google Scholar 

  • Kim, W. S., Rahmanto, A. S., Kamili, A., Rye, K. A., Guillemin, G. J., Gelissen, I. C., Jessup, W., Hill, A. F., and Garner, B. 2006, Role of ABCG1 and ABCA1 in regulation of neuronal cholesterol efflux to apolipoprotein-E discs and suppression of amyloid-β peptide generation. J. Biol. Chem. 282: 2851–2861.

    PubMed  Google Scholar 

  • Kiss, R. S., Kay, C. M., and Ryan, R. O. 1999, Amphipathic alpha-helix bundle organization of lipid-free chicken apolipoprotein A-I. Biochemistry 38: 4327–4334.

    CAS  PubMed  Google Scholar 

  • Kockx, M., Jessup, W., and Kritharides, L. 2008, Regulation of endogenous apolipoprotein E secretion by macrophages. Arterioscler. Thromb. Vasc. Biol. 28: 1060–1067.

    CAS  PubMed  Google Scholar 

  • Kockx, M., Rye, K. A., Gaus, K., Quinn, C. M., Wright, J., Sloane, T., Sviridov, D., Fu, Y., Sullivan, D., Burnett, J. R., Rust, S., Assmann, G., Anantharamaiah, G. M., Palgunachari, M. N., Lund-Katz, S., Phillips, M. C., Dean, R. T., Jessup, W., and Kritharides, L. 2004, Apolipoprotein A-I-simulated apolipoprotein E secretion from human macrophages is independent of cholesterol efflux. J. Biol. Chem. 279: 25966–25977.

    CAS  PubMed  Google Scholar 

  • Kono, M., Okumura, Y., Tanaka, M., Nguyen, D., Dhanasekaran, P., Lund-Katz, S., Phillips, M. C., and Saito, H. 2008, Conformational flexibility of the N-terminal domain of apolipoprotein A-I bound to spherical lipid particles. Biochemistry 47: 11340–11347.

    CAS  PubMed  Google Scholar 

  • Kontush, A. and Chapman, M. J. 2006, Functionally defective high-density lipoprotein: A new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis. Pharmacol. Rev. 58: 342–374.

    CAS  PubMed  Google Scholar 

  • Krimbou, L., Denis, M., Haidar, B., Carrier, M., Marcil, M., and Genest, J., Jr. 2004, Molecular interactions between apoE and ABCA1: impact on apoE lipidation. J. Lipid Res. 45: 839–848.

    CAS  PubMed  Google Scholar 

  • Krimbou, L., Marcil, M., and Genest, J. 2006, New insights into the biogenesis of human high-density lipoprotein. Curr. Opin. Lipidol. 17: 257–267.

    Google Scholar 

  • Kruski, A. W. and Scanu, A. M. 1974, Interaction of human serum high density lipoprotein apoprotein with phospholipids. Chem. Phys. Lipids 13: 27–48.

    CAS  PubMed  Google Scholar 

  • LaDu, M. J., Reardon, C., Van Eldick, L., Fagan, L. M., Bu, G., Holtzman, D., and Getz, G. S. 2000, Lipoproteins in the central nervous system. Ann. NY Acad. Sci. 903: 167–175.

    CAS  PubMed  Google Scholar 

  • Lee, J. Y. and Parks, J. S. 2005, ATP-binding cassette transporter AI and its role in HDL formation. Curr. Opin. Lipidol. 16: 19–25.

    PubMed  Google Scholar 

  • Li, L., Chen, J., Mishra, V. K., Kurtz, J. A., Cao, D., Klon, A. E., Harvey, S. C., Anantharamaiah, G. M., and Segrest, J. P. 2004, Double belt structure of discoidal high density lipoproteins: Molecular basis for size heterogeneity. J. Mol. Biol. 343: 1293–1311.

    CAS  PubMed  Google Scholar 

  • Li, W., Tanimura, M., Luo, C., Datta, S., and Chan, L. 1988, The apolipoprotein multigene family: biosynthesis, structure, structure-function relationships, and evolution. J. Lipid Res. 29: 245–271.

    CAS  PubMed  Google Scholar 

  • Liang, J. S., Schreiber, B. M., Salmona, M., Phillip, G., Gonnerman, W. A., de Beer, F. C., and Sipe, J. D. 1996, Amino terminal region of acute phase, but not constitutive, serum amyloid A (apoSAA) specifically binds and transports cholesterol into aortic smooth muscle and HepG2 cells. J. Lipid Res. 37: 2109–2116.

    CAS  PubMed  Google Scholar 

  • Liang, J. S. and Sipe, J. D. 1995, Recombinant human serum amyloid A (apoSSAp) binds cholesterol and modulates cholesterol flux J. Lipid Res. 36: 37–46.

    CAS  PubMed  Google Scholar 

  • Liu, B. and Krieger, M. 2002, Highly purified scavenger receptor class B, type I reconstituted into phosphatidylcholine/cholesterol liposomes mediates high affinity high density lipoprotein binding and selective lipid uptake. J. Biol. Chem. 277: 34125–34135.

    CAS  PubMed  Google Scholar 

  • Liu, L., Bortnick, A. E., Nickel, M., Dhanasekaran, P., Subbaiah, P. V., Lund-Katz, S., Rothblat, G. H., and Phillips, M. C. 2003, Effects of apolipoprotein A-I on ATP-binding cassette transporter A1-mediated efflux of macrophage phospholipid and cholesterol. J. Biol. Chem. 278: 42976–42984.

    CAS  PubMed  Google Scholar 

  • Liu, T., Krieger, M., Kan, H. Y., and Zannis, V. I. 2002, The effects of mutations in helices 4 and 6 of apo A-I on SR-BI-mediated cholesterol efflux suggest that formation of a productive complex between reconstituted HDL and SR-BI is required for efficient lipid transport. J. Biol. Chem. 277: 21576–21584.

    CAS  PubMed  Google Scholar 

  • Llera-Moya, M., Rothblat, G. H., Connelly, M. A., Kellner-Weibel, G., Sakr, S. W., Phillips, M. C., and Williams, D. L. 1999, Scavenger receptor BI (SR-BI) mediates free cholesterol flux independently of HDL tethering to the cell surface. J. Lipid Res. 40: 575–580.

    PubMed  Google Scholar 

  • Lu, B., Morrow, J. A., and Weisgraber, K. H. 2000, Conformational reorganization of the four-helix bundle of human apolipoprotein E in binding to phospholipid. J. Biol. Chem. 275: 20775–20781.

    CAS  PubMed  Google Scholar 

  • Lu, R., Arakawa, R., Ito-Osumi, C., Iwamoto, N., and Yokoyama, S. 2008, ApoA-I facilitates ABCA1 recycle/accumulation to cell surface by inhibiting its intracellular degradation and increases HDL generation. Arterioscler. Thromb. Vasc. Biol. 28: 1820–1824.

    CAS  PubMed  Google Scholar 

  • Lund-Katz, S., Liu, L., Thuahnai, S. T., and Phillips, M. C. 2003, High density lipoprotein structure. Frontiers in Bioscience 8: d1044–d1054.

    CAS  PubMed  Google Scholar 

  • Lux, S. E., Hirz, R., Shrager, R. I., and Gotto, A. M. 1972, The influence of lipid on the conformation of human plasma high density apolipoproteins. J. Biol. Chem. 247: 2598–2606.

    CAS  PubMed  Google Scholar 

  • Mahley, R. W. 1988, Apolipoprotein E: Cholesterol transport protein with expanding role in cell biology. Science 240: 622–630.

    CAS  PubMed  Google Scholar 

  • Mahley, R. W. and Huang, Y. 1999, Apolipoprotein E: From atherosclerosis to Alzheimer’s disease and beyond. Curr. Opin. Lipidol. 10: 207–217.

    CAS  PubMed  Google Scholar 

  • Mahley, R. W., Huang, Y., and Rall, S. C. 1999, Pathogenesis of type III hyperlipoproteinemia (dysbetalipoproteinemia): Questions, quandaries, and paradoxes. J. Lipid Res. 40: 1933–1949.

    CAS  PubMed  Google Scholar 

  • Mahley, R. W., Huang, Y., and Weisgraber, K. H. 2006, Putting cholesterol in its place: apoE and reverse cholesterol transport. J. Clin. Invest. 116: 1226–1229.

    CAS  PubMed  Google Scholar 

  • Mahley, R. W. and Rall, J. 1995, Type III hyperlipoproteinemia (dysbetalipoproteinemia): The role of apolipoprotein E in normal and abnormal lipoprotein metabolism. In The Metabolic and Molecular Bases of Inherited Disease, 7th edn, C. R. Scriver et al., eds., McGraw-Hill, Inc., New York, pp. 1953–1980.

    Google Scholar 

  • Mahley, R. W., Weisgraber, K. H., and Huang, Y. 2009, Apolipoprotein E: Structure determines function – from atherosclerosis to Alzheimer’s disease to AIDS. J. Lipid Res. 50: S183–S188.

    PubMed  Google Scholar 

  • Marcel, Y. L., Ouimet, M., and Wang, M. D. 2008, Regulation of cholesterol efflux from macrophages. Curr. Opin. Lipidol. 19: 455–461.

    CAS  PubMed  Google Scholar 

  • Marsche, G., Frank, S., Raynes, J. G., Kozarsky, K. F., Sattler, W., and Malle, E. 2007, The lipidation status of acute-phase protein serum amyloid A determines cholesterol mobilization via scavenger receptor class B, type I. Biochem. J. 402: 117–124.

    CAS  PubMed  Google Scholar 

  • Massey, J. B., Gotto, A. M. J., and Pownall, H. J. 1979, Contribution of α helix formation in human plasma apolipoproteins to their enthalpy of association with phospholipids. J. Biol. Chem. 254: 9359–9361.

    CAS  Google Scholar 

  • Massey, J. B. and Pownall, H. J. 2008, Cholesterol is a determinant of the structures of discoidal high density lipoproteins formed by the solubilization of phospholipid membranes by apolipoprotein A-I. Biochim. Biophys. Acta 1781: 245–253.

    CAS  PubMed  Google Scholar 

  • Masson, D., Jiang, X. C., Lagrost, L., and Tall, A. R. 2009, The role of plasma lipid transfer proteins in lipoprotein metabolism and atherogenesis. J. Lipid Res. 50: S201–S206.

    PubMed  Google Scholar 

  • Morrow, J. A., Hatters, D. M., Lu, B., Hocht, P., Oberg, K. A., Rupp, B., and Weisgraber, K. H. 2002, Apolipoprotein E4 forms a molten globule. J. Biol. Chem. 277: 50380–50385.

    CAS  PubMed  Google Scholar 

  • Morrow, J. A., Segall, M. L., Lund-Katz, S., Phillips, M. C., Knapp, M., Rupp, B., and Weisgraber, K. H. 2000, Differences in stability among the human apolipoprotein E isoforms determined by the amino-terminal domain. Biochemistry 39: 11657–11666.

    CAS  PubMed  Google Scholar 

  • Narayanaswami, V., Maiorano, J. N., Dhanasekaran, P., Ryan, R. O., Phillips, M. C., Lund-Katz, S., and Davidson, W. S. 2004, Helix orientation of the functional domains in apolipoprotein E in discoidal high density lipoprotein particles. J. Biol. Chem. 279: 14273–14279.

    CAS  PubMed  Google Scholar 

  • Narayanaswami, V. and Ryan, R. O. 2000, Molecular basis of exchangeable apolipoprotein function. Biochim. Biophys. Acta 1483: 15–36.

    CAS  PubMed  Google Scholar 

  • Narayanaswami, V., Szeto, S. S., and Ryan, R. O. 2001, Lipid association-induced N- and C-terminal domain reorganization in human apolipoprotein E3. J. Biol. Chem. 276: 37853–37860.

    CAS  PubMed  Google Scholar 

  • Neufeld, E. B., Remaley, A. T., Demosky, S. J., Stonik, J. A., Cooney, A., Comly, M., Dwyer, N. K., Zhang, M., Blanchette-Mackie, E. J., Santamarina-Fojo, S., and Brewer, H. B. J. 2001, Cellular localization and trafficking of the human ABCA1 transporter. J. Biol. Chem. 276: 27584–27590.

    CAS  PubMed  Google Scholar 

  • Nguyen, D., Dhanasekaran, P., Phillips, M. C., and Lund-Katz, S. 2009, Molecular mechanism of apolipoprotein E binding to lipoprotein particles. Biochemistry 48: 3025–3032.

    CAS  PubMed  Google Scholar 

  • Nieland, T. J., Ehrlich, M., Krieger, M., and Kirchhausen, T. 2005, Endocytosis is not required for the selective lipid uptake mediated by murine SR-BI. Biochim. Biophys. Acta 1734: 44–51.

    CAS  PubMed  Google Scholar 

  • O’Brien, K. D. and Chait, A. 2006, Serum amyloid A: The other inflammatory protein. Curr. Athero. Rep. 8: 62–68.

    Google Scholar 

  • Oda, M. N., Forte, T. M., Ryan, R. O., and Voss, J. C. 2003, The C-terminal domain of apolipoprotein A-I contains a lipid-sensitive conformational trigger. Nat. Struct. Biol. 10: 455–460.

    CAS  PubMed  Google Scholar 

  • Oram, J. F. 2000, Tangier Disease and ABCA1. Biochim. Biophys. Acta 1529: 321–330.

    CAS  PubMed  Google Scholar 

  • Oram, J. F. and Heinecke, J. W. 2005, ATP-binding cassette transporter A1: A cell cholesterol exporter that protects against cardiovascular disease. Physiol. Rev. 85: 1343–1372.

    CAS  PubMed  Google Scholar 

  • Oram, J. F., Lawn, R. M., Garvin, M. R., and Wade, D. P. 2000, ABCA1 is the cAMP-inducible apolipoprotein receptor that mediates cholesterol secretion from macrophages. J. Biol. Chem. 275: 34508–34511.

    CAS  PubMed  Google Scholar 

  • Palgunachari, M. N., Mishra, V. K., Lund-Katz, S., Phillips, M. C., Adeyeye, S. O., Alluri, S., Anantharamaiah, G. M., and Segrest, J. P. 1996, Only the two end helixes of eight tandem amphipathic helical domains of human apo A-I have significant lipid affinity. Arterioscler. Thromb. Vasc. Biol. 16: 328–338.

    CAS  PubMed  Google Scholar 

  • Perugini, M. A., Schuck, P., and Howlett, G. J. 2000, Self-association of human apolipoprotein E3 and E4 in the presence and absence of phospholipid. J. Biol. Chem. 275: 36758–36765.

    CAS  PubMed  Google Scholar 

  • Peters-Libeu, C. A., Newhouse, Y., Hall, S. C., Witkowska, H. E., and Weisgraber, K. H. 2007, Apolipoprotein E dipalmitoylphosphatidylcholine particles are ellipsoidal in solution. J. Lipid Res. 48: 1035–1044.

    CAS  PubMed  Google Scholar 

  • Peters-Libeu, C. A., Newhouse, Y., Hatters, D. M., and Weisgraber, K. H. 2006, Model of biologically active apolipoprotein E bound to dipalmitoylphosphatidylcholine. J. Biol. Chem. 281: 1073–1079.

    CAS  PubMed  Google Scholar 

  • Phillips, M. C., Johnson, W. J., and Rothblat, G. H. 1987, Mechanisms and consequences of cellular cholesterol exchange and transfer. Biochim. Biophys. Acta 906: 223–276.

    CAS  PubMed  Google Scholar 

  • Pitas, R. E., Boyles, J. K., Lee, S. H., Hui, D., and Weisgraber, K. H. 1987, Lipoproteins and their receptors in the central nervous system. J. Biol. Chem. 262: 14352–14360.

    CAS  PubMed  Google Scholar 

  • Pittman, R. C., Knecht, T. P., Rosenbaum, M. S., and Taylor, C. A., Jr. 1987, A nonendocytotic mechanism for the selective uptake of high density lipoprotein-associated cholesteryl esters. J. Biol. Chem. 262: 2443–2450.

    CAS  PubMed  Google Scholar 

  • Pownall, H., Pao, Q., Hickson, D., Sparrow, J. T., Kusserow, S. K., and Massey, J. B. 1981, Kinetics and mechanism of association of human plasma apolipoproteins with dimyristoylphosphatidylcholine: Effect of protein structure and lipid clusters on reaction rates. Biochemistry 20: 6630–6635.

    CAS  PubMed  Google Scholar 

  • Pownall, H. J. 2006, Detergent-mediated phospholipidation of plasma lipoproteins increases HDL cholesterophilicity and cholesterol efflux via SR-BI. Biochemistry 45: 11514–11522.

    CAS  PubMed  Google Scholar 

  • Pownall, H. J. and Ehnholm, C. 2006, The unique role apolipoprotein A-I in HDL remodeling and metabolism. Curr. Opin. Lipidol. 17: 209–213.

    CAS  PubMed  Google Scholar 

  • Pownall, H. J., Massey, J. B., Kusserow, S. K., and Gotto, A. M. 1978, Kinetics of lipid-protein interactions: interaction of apolipoprotein A-I from human plasma high density lipoproteins with phosphatidylcholine. Biochemistry 17: 1183–1188.

    CAS  PubMed  Google Scholar 

  • Pownall, H. J., Massey, J. B., Kusserow, S. K., and Gotto, A. M., Jr. 1979, Kinetics of lipid-protein interactions: Effect of cholesterol on the association of human plasma high-density apolipoprotein A-I with L-alpha-dimyristoylphosphatidylcholine. Biochemistry 18: 574–579.

    CAS  PubMed  Google Scholar 

  • Pownall, H. J., Massey, J. B., Sparrow, J. T., and Gotto, A. M. 1987, Lipid-protein interactions and lipoprotein reassembly, in Plasma Lipoproteins. A. M. Gotto, ed., Elsevier Science Publishers B.V., Amsterdam, pp. 95–127.

    Google Scholar 

  • Qiu, X., Mistry, A., Ammirati, M. J., Chrunyk, B. A., Clark, R. W., Cong, Y., Culp, J. S., Danley, D. E., Freeman, T. B., Goeghegan, K. F., Griffor, M. C., Hawrylik, S. J., Hayward, C. M., Hensley, P., Hoth, L. R., Karma, G. A., Lira, M. E., Lloyd, D. B., McGrath, K. M., Stutzman-Engwall, K. J., Subashi, A. K., Subashi, T. A., Thompson, J. F., Wang, I. K., Zhao, H., and Seddon, A. P. 2007, Crystal structure of cholesteryl ester transfer protein reveals a long tunnel and four bound lipid molecules. Nat. Struct. Mol. Biol. 14: 106–113.

    PubMed  Google Scholar 

  • Raussens, V., Fisher, C. A., Goormaghtigh, E., Ryan, R. O., and Ruysschaert, J. M. 1998, The low density lipoprotein receptor active conformation of apolipoprotein E. J. Biol. Chem. 273: 25825–25830.

    CAS  PubMed  Google Scholar 

  • Reijngoud, D. J. and Phillips, M. C. 1982, Mechanism of dissociation of human apolipoprotein A-I from complexes with dimyristoylphosphatidylcholine as studied by guanidine hydrochloride denaturation. Biochemistry 21: 2969–2976.

    CAS  PubMed  Google Scholar 

  • Remaley, A. T., Thomas, F., Stonik, J. A., Demosky, S. J., Bark, S. E., Neufeld, E. B., Bocharov, A. V., Vishnyakova, T. G., Patterson, A. P., Eggerman, T. L., Santamarina-Fojo, S., and Brewer, B. H. 2003, Synthetic amphipathic helical peptides promote lipid efflux from cells by an ABCA1-dependent and an ABCA1-independent pathway. J. Lipid Res. 44: 828–836.

    CAS  PubMed  Google Scholar 

  • Rigotti, A., Trigatti, B., Penman, M., Rayburn, H., Herz, J., and Krieger, M. 1997, A targeted mutation in the murine gene encoding the high density lipoprotein (HDL) receptor scavenger receptor class B type I reveals its key role in HDL metabolism. Proc. Natl. Acad. Sci. USA 94: 12610–12615.

    CAS  PubMed  Google Scholar 

  • Roberts, L. M., Ray, M. J., Shih, T. W., Hayden, E., Reader, M. M., and Brouillette, C. G. 1997, Structural analysis of apolipoprotein A-I: limited proteolysis of methionine-reduced and -oxidized lipid-free and lipid-bound human apoA-I. Biochemistry 36: 7615–7624.

    CAS  PubMed  Google Scholar 

  • Rodrigueza, W. V., Thuahnai, S. T., Temel, R. E., Lund-Katz, S., Phillips, M. C., and Williams, D. L. 1999, Mechanism of scavenger receptor class B type I-mediated selective uptake of cholesteryl esters from high density lipoprotein to adrenal cells. J. Biol. Chem. 274: 20344–20350.

    CAS  PubMed  Google Scholar 

  • Rogers, D. P., Roberts, L., Lebowitz, J., Datta, G., Anantharamaiah, G. M., Engler, J. A., and Brouillette, C. G. 1998, The lipid-free structure of apolipoprotein A-I: Effects of amino-terminal deletions. Biochemistry 37: 11714–11725.

    CAS  PubMed  Google Scholar 

  • Roosbeek, S., Vanloo, B., Duverger, N., Caster, H., Breyne, J., De Beun, I., Patel, H., Vandekerckhove, J., Shoulders, C., Rosseneu, M., and Peelman, F. 2001, Three arginine residues in apolipoprotein A-I are critical for activation of lecithin: cholesterol acyltransferase. J. Lipid Res. 42: 31–40.

    CAS  PubMed  Google Scholar 

  • Roses, A. D. 1996, Apolipoprotein E alleles as risk factors in Alzheimer’s disease. Ann. Rev. Med. 47: 387–400.

    CAS  PubMed  Google Scholar 

  • Rothblat, G. H., Bamberger, M., and Phillips, M. C. 1986, Reverse cholesterol transport. Meth. Enzymol. 129: 628–644.

    CAS  PubMed  Google Scholar 

  • Rye, K. A. and Barter, P. J. 2004, Formation and metabolism of prebeta-migrating, lipid-poor apolipoprotein A-I. Arterioscler. Thromb. Vasc. Biol. 24: 421–428.

    CAS  PubMed  Google Scholar 

  • Rye, K. A., Bursill, C. A., Lambert, G., Tabet, F., and Barter, P. J. 2009, The metabolism and anti-atherogenic properties of HDL. J. Lipid Res. 50: S195–S200.

    PubMed  Google Scholar 

  • Rye, K. A., Hime, N. J., and Barter, P. J. 1997, Evidence that cholesteryl ester transfer protein-mediated reductions in reconstituted high density lipoprotein size involve particle fusion. J. Biol. Chem. 272: 3953–3960.

    CAS  PubMed  Google Scholar 

  • Rye, K. A., Wee, K., Curtiss, L. K., Bonnet, D. J., and Barter, P. J. 2008, Apolipoprotein A-II inhibits high density lipoprotein remodeling and lipid-poor apolipoprotein A-I formation. J. Biol. Chem. 278: 22530–22536.

    Google Scholar 

  • Sahoo, D., Darlington, Y. F., Pop, D., Williams, D. L., and Connelly, M. A. 2007, Scavenger receptor class B type I (SR-BI) assembles into detergent-sensitive dimers and tetramers. Biochim. Biophys. Acta 1771: 807–817.

    CAS  PubMed  Google Scholar 

  • Saito, H., Dhanasekaran, P., Baldwin, F., Weisgraber, K., Lund-Katz, S., and Phillips, M. C. 2001, Lipid binding-induced conformational change in human apolipoprotein E. J. Biol. Chem. 276: 40949–40954.

    CAS  PubMed  Google Scholar 

  • Saito, H., Dhanasekaran, P., Baldwin, F., Weisgraber, K. H., Phillips, M. C., and Lund-Katz, S. 2003a, Effects of polymorphism on the lipid interaction of human apolipoprotein E. J. Biol. Chem. 278: 40723–40729.

    CAS  PubMed  Google Scholar 

  • Saito, H., Dhanasekaran, P., Nguyen, D., Deridder, E., Holvoet, P., Lund-Katz, S., and Phillips, M. C. 2004a, Alpha-helix formation is required for high affinity binding of human apolipoprotein A-I to lipids. J. Biol. Chem. 279: 20974–20981.

    CAS  PubMed  Google Scholar 

  • Saito, H., Dhanasekaran, P., Nguyen, D., Holvoet, P., Lund-Katz, S., and Phillips, M. C. 2003b, Domain structure and lipid interaction in human apolipoproteins A-I and E: A general model. J. Biol. Chem. 278: 23227–23232.

    CAS  PubMed  Google Scholar 

  • Saito, H., Lund-Katz, S., and Phillips, M. C. 2004b, Contributions of domain structure and lipid interaction to the functionality of exchangeable human apolipoproteins. Progress in Lipid Research 43: 350–380.

    CAS  PubMed  Google Scholar 

  • Saito, H., Miyako, Y., Handa, T., and Miyajima, K. 1997, Effect of cholesterol on apolipoprotein A-I binding to lipid bilayers and emulsions. J. Lipid Res. 38: 287–294.

    CAS  PubMed  Google Scholar 

  • Sakamoto, T., Tanaka, M., Vedhachalam, C., Nickel, M., Nguyen, D., Dhanasekaran, P., Phillips, M. C., Lund-Katz, S., and Saito, H. 2008, Contributions of the carboxyl-terminal helical segment to the self-association and lipoprotein preferences of human apolipoprotein E3 and E4 isoforms. Biochemistry 47: 2968–2977.

    CAS  PubMed  Google Scholar 

  • Santamarina-Fojo, S., Lambert, G., Hoeg, J. M., and Brewer, H. B. J. 2000, Lecithin-cholesterol acyltransferase: role in lipoprotein metabolism, reverse cholesterol transport and atherosclerosis. Curr. Opin. Lipidol. 11: 267–275.

    CAS  PubMed  Google Scholar 

  • Scanu, A. 1967, Binding of human serum high density lipoprotein apoprotein with aqueous dispersions of phospholipids. J. Biol. Chem. 242: 711–719.

    CAS  PubMed  Google Scholar 

  • Schneeweis, L. A., Koppaka, V., Lund-Katz, S., Phillips, M. C., and Axelsen, P. H. 2005, Structural analysis of lipoprotein E particles. Biochemistry 44: 12525–12534.

    CAS  PubMed  Google Scholar 

  • Segall, M. L., Dhanasekaran, P., Baldwin, F., Anantharamaiah, G. M., Weisgraber, K., Phillips, M. C., and Lund-Katz, S. 2002, Influence of apoE domain structure and polymorphism on the kinetics of phospholipid vesicle solubilization. J. Lipid Res. 43: 1688–1700.

    CAS  PubMed  Google Scholar 

  • Segrest, J. P., Garber, D. W., Brouillette, C. G., Harvey, S. C., and Anantharamaiah, G. M. 1994, The amphipathic alpha-helix: a multifunctional structural motif in plasma apolipoproteins. Adv. Protein Chem. 45: 303–369.

    CAS  PubMed  Google Scholar 

  • Segrest, J. P., Jones, M. K., De Loof, H., Brouillette, C. G., Venkatachalapathi, Y. V., and Anantharamaiah, G. M. 1992, The amphipathic helix in the exchangeable apolipoproteins: a review of secondary structure and function. J. Lipid Res. 33: 141–166.

    CAS  PubMed  Google Scholar 

  • Segrest, J. P., Jones, M. K., Klon, A. E., Sheldahl, C. J., Hellinger, M., DeLoof, H., and Harvey, S. C. 1999, A detailed molecular belt model for apolipoprotein A-I in discoidal high density lipoprotein. J. Biol. Chem. 274: 31755–31758.

    CAS  PubMed  Google Scholar 

  • Segrest, J. P., Pownall, H. J., Jackson, R. L., Glenner, G. G., and Pollock, P. S. 1976, Amyloid A: Amphipathic helixes and lipid binding. Biochemistry 15: 3187–3191.

    CAS  PubMed  Google Scholar 

  • Settasatian, N., Duong, M., Curtiss, L. K., Ehnholm, C., Jauhianinen, M., Huuskonen, J., and Rye, K. A. 2001, The mechanism of the remodeling of high density lipoproteins by phospholipid transfer protein. J. Biol. Chem. 276: 26898–26905.

    CAS  PubMed  Google Scholar 

  • Silva, R. A. G., Hilliard, G. M., Fang, J., Macha, S., and Davidson, W. S. 2005, A three-dimensional molecular model of lipid-free apolipoprotein A-I determined by cross-linking/mass spectrometry and sequence tracking. Biochemistry 44: 2759–2769.

    CAS  PubMed  Google Scholar 

  • Silva, R. A. G., Huang, R., Morris, J., Fang, J., Gracheva, E. O., Ren, G., Kontush, A., Jerome, W. G., Rye, K. A., and Davidson, W. S. 2008, Structure of apolipoprotein A-I in spherical high density lipoproteins of different sizes. Proc. Natl. Acad. Sci. USA 105: 12176–12181.

    CAS  PubMed  Google Scholar 

  • Sivashanmugam, A. and Wang, J. 2009, A unified scheme for initiation and conformational adaptation of human apolipoprotein E N-terminal domain upon lipoprotein-binding and for receptor-binding activity. J. Biol. Chem. 284: 14657–14666.

    CAS  PubMed  Google Scholar 

  • Sorci-Thomas, M. and Thomas, M. J. 2002, The effects of altered apolipoprotein A-I structure on plasma HDL concentration. Trends Cardiovasc. Med. 12: 121–128.

    CAS  PubMed  Google Scholar 

  • Sparks, D. L., Davidson, W. S., Lund-Katz, S., and Phillips, M. C. 1995, Effects of the neutral lipid content of high density lipoprotein on apolipoprotein A-I structure and particle stability. J. Biol. Chem. 270: 26910–26917.

    CAS  PubMed  Google Scholar 

  • Stevens, F. J. 2004, Hypothetical structure of human serum amyloid A protein. Amyloid. J. Protein Folding. Disord. 11: 71–80.

    CAS  Google Scholar 

  • Stonik, J. A., Remaley, A. T., Demosky, S. J., Neufeld, E. B., Bocharov, A., and Brewer, H. B. 2004, Serum amyloid A promotes ABCA1-dependent and ABCA1-independent lipid efflux from cells. Biochem. Biophys. Res. Commun. 321: 936–941.

    CAS  PubMed  Google Scholar 

  • Tall, A. R., Small, D. M., Deckelbaum, R. J., and Shipley, G. G. 1977, Structure and thermodynamic properties of high density lipoprotein recombinants. J. Biol. Chem. 252: 4701–4711.

    CAS  PubMed  Google Scholar 

  • Tam, S. P., Flexman, A., Hulme, J., and Kisilevsky, R. 2002, Promoting export of macrophage cholesterol: the physiological role of a major acute-phase protein, serum amyloid A 2.1. J. Lipid Res. 43: 1410–1420.

    CAS  PubMed  Google Scholar 

  • Tanaka, M., Koyama, M., Dhanasekaran, P., Nguyen, D., Nickel, M., Lund-Katz, S., Saito, H., and Phillips, M. C. 2008, Influence of tertiary structure domain properties on the functionality of apolipoprotein A-I. Biochemistry 47: 2172–2180.

    CAS  PubMed  Google Scholar 

  • Thomas, M. J., Bhat, S., and Sorci-Thomas, M. G. 2006, The use of chemical cross-linking and mass spectrometry to elucidate the tertiary conformation of lipid-bound apolipoprotein A-I. Curr. Opin. Lipidol. 17: 214–220.

    CAS  PubMed  Google Scholar 

  • Thomas, M. J., Bhat, S., and Sorci-Thomas, M. G. 2008, Three-dimensional models of HDL apoA-I: Implications for its assembly and function. J. Lipid Res. 49: 1875–1883.

    CAS  PubMed  Google Scholar 

  • Thuahnai, S. T., Lund-Katz, S., Anantharamaiah, G. M., Williams, D. L., and Phillips, M. C. 2003, A quantitative analysis of apolipoprotein binding to scavenger receptor class B, type I (SR-BI): multiple binding sites for lipid-free and lipid-associated apolipoproteins. J. Lipid Res. 44: 1132–1142.

    CAS  PubMed  Google Scholar 

  • Thuahnai, S. T., Lund-Katz, S., Dhanasekaran, P., Llera-Moya, M., Connelly, M. A., Williams, D. L., Rothblat, G. H., and Phillips, M. C. 2004, SR-BI-mediated cholesteryl ester selective uptake and efflux of unesterified cholesterol: Influence of HDL size and structure. J. Biol. Chem. 279: 12448–12455.

    CAS  PubMed  Google Scholar 

  • Thuahnai, S. T., Lund-Katz, S., Williams, D. L., and Phillips, M. C. 2001, Scavenger receptor class B, type I-mediated uptake of various lipids into cells. J. Biol. Chem. 276: 43801–43808.

    CAS  PubMed  Google Scholar 

  • Thuren, T. 2000, Hepatic lipase and HDL metabolism. Curr. Opin. Lipidol. 11: 277–283.

    CAS  PubMed  Google Scholar 

  • Tokuda, T., Calero, M., Matsubara, E., Vidal, R., Kumar, A., Permanne, B., Ziokovic, B., Smith, J. D., LaDu, M. J., Rostagno, A., Frangione, B., and Ghiso, J. 2000, Lipidation of apolipoprotein E influences its isoform-specific interaction with Alzheimer’s amyloid β peptides. Biochem. J. 348: 359–365.

    CAS  PubMed  Google Scholar 

  • Tricerri, M. A., Behling Agree, A. K., Sanchez, S. A., and Jonas, A. 2000, Characterization of apolipoprotein A-I structure using a cysteine-specific fluorescence probe. Biochemistry 39: 14682–14691.

    CAS  PubMed  Google Scholar 

  • Trigatti, B., Rayburn, H., Vinals, M., Braun, A., Miettinen, H., Penman, M., Hertz, M., Schrenzel, M., Amigo, L., Rigotti, A., and Krieger, M. 1999, Influence of the high density lipoprotein receptor SR-BI on reproductive and cardiovascular pathophysiology. Proc. Natl. Acad. Sci. USA 96: 9322–9327.

    CAS  PubMed  Google Scholar 

  • Trigatti, B. L., Krieger, M., and Rigotti, A. 2003, Influence of the HDL receptor SR-BI on lipoprotein metabolism and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 23: 1732–1738.

    CAS  PubMed  Google Scholar 

  • van der Westhuijzen, D. R., de Beer, F. C., and Webb, N. R. 2007, HDL cholesterol transport during inflammation. Curr. Opin. Lipidol. 18: 147–151.

    Google Scholar 

  • van Eck, M., Pennings, M., Hoekstra, M., Out, R., and Van Berkel, T. J. C. 2005, Scavenger receptor BI and ATP-binding cassette transporter A1 in reverse cholesterol transport and atherosclerosis. Curr. Opin. Lipidol. 16: 307–315.

    PubMed  Google Scholar 

  • Van Tol, A. 2002, Phospholipid transfer protein. Curr. Opin. Lipidol. 13: 135–139.

    PubMed  Google Scholar 

  • Vanloo, B., Morrison, J., Fidge, N., Lorent, G., Lins, L., Brasseur, R., Ruysschaert, J. M., Baert, J., and Rosseneu, M. 1991, Characterization of the discoidal complexes formed between apoA-I-CNBr fragments and phosphatidylcholine. J. Lipid Res. 32: 1253–1264.

    CAS  PubMed  Google Scholar 

  • Vaughan, A. M. and Oram, J. F. 2006, ABCA1 and ABCG1 or ABCG4 act sequentially to remove cellular cholesterol and generate cholesterol-rich HDL. J. Lipid Res. 47: 2433–2443.

    CAS  PubMed  Google Scholar 

  • Vedhachalam, C., Duong, P. T., Nickel, M., Nguyen, D., Dhanasekaran, P., Saito, H., Rothblat, G. H., Lund-Katz, S., and Phillips, M. C. 2007a, Mechanism of ATP-binding cassette transporter A1-mediated cellular lipid efflux to apolipoprotein A-I and formation of high density lipoprotein particles. J. Biol. Chem. 282: 25123–25130.

    CAS  PubMed  Google Scholar 

  • Vedhachalam, C., Ghering, A. B., Davidson, W. S., Lund-Katz, S., Rothblat, G. H., and Phillips, M. C. 2007b, ABCA1-induced cell surface binding sites for apoA-I. Arterioscler. Thromb. Vasc. Biol. 27: 1603–1609.

    CAS  PubMed  Google Scholar 

  • Vedhachalam, C., Liu, L., Nickel, M., Dhanasekaran, P., Anantharamaiah, G. M., Lund-Katz, S., Rothblat, G., and Phillips, M. C. 2004, Influence of apo A-I structure on the ABCA1-mediated efflux of cellular lipids. J. Biol. Chem. 279: 49931–49939.

    CAS  PubMed  Google Scholar 

  • Vedhachalam, C., Narayanaswami, V., Neto, N., Forte, T. M., Phillips, M. C., Lund-Katz, S., and Bielicki, J. K. 2007c, The C-terminal lipid-binding domain of apolipoprotein E is a highly efficient mediator of ABCA1-dependent cholesterol efflux that promotes the assembly of high-density lipoproteins. Biochemistry 46: 2583–2593.

    CAS  PubMed  Google Scholar 

  • Vitello, L. B. and Scanu, A. M. 1976, Studies on human serum high density lipoproteins. Self-association of apolipoprotein A-I in aqueous solutions. J. Biol. Chem. 251: 1131–1136.

    CAS  PubMed  Google Scholar 

  • Wang, N., Silver, D. L., Costet, P., and Tall, A. R. 2000, Specific binding of ApoA-I, enhanced cholesterol efflux, and altered plasma membrane morphology in cells expressing ABC1. J. Biol. Chem. 275: 33053–33058.

    CAS  PubMed  Google Scholar 

  • Wang, N. and Tall, A. R. 2003, Regulation and mechanisms of ATP-binding cassette transporter A1-mediated cellular cholesterol efflux. Arterioscler. Thromb. Vasc. Biol. 23: 1178–1184.

    CAS  PubMed  Google Scholar 

  • Wang, X., Collins, H. L., Ranalletta, M., Fuki, I. V., Billheimer, J. T., Rothblat, G. H., Tall, A. R., and Rader, D. J. 2007a, Macrophage ABCA1 and ABCG1, but not SR-BI, promote macrophage reverse cholesterol transport in vivo. J. Clin. Invest. 117: 2216–2224.

    CAS  PubMed  Google Scholar 

  • Wang, X., Collins, H. L., Ranalletta, M., Fuki, I. V., Billheimer, J. T., Rothblat, G. H., Tall, A. R., and Rader, D. J. 2007b, Macrophage ABCA1 and ABCG1, but not SR-BI, promote macrophage reverse cholesterol transport in vivo. J. Clin. Invest. 117: 2216–2224.

    CAS  PubMed  Google Scholar 

  • Weisgraber, K. H. 1990, Apolipoprotein E distribution among human plasma lipoproteins: role of the cysteine-arginine interchange at residue 112. J. Lipid Res. 31: 1503–1511.

    CAS  PubMed  Google Scholar 

  • Weisgraber, K. H. 1994, Apolipoprotein E: Structure-function relationships. Adv. Protein Chem. 45: 249–302.

    CAS  PubMed  Google Scholar 

  • Weisgraber, K. H., Lund-Katz, S., and Phillips, M. C. 1992, Apolipoprotein E: Structure-function correlations, in High Density Lipoproteins and Atherosclerosis III. N. E. Miller and A. R. Tall, eds., Elsevier Science Publications., pp. 175–181.

    Google Scholar 

  • Westerlund, J. A. and Weisgraber, K. H. 1993, Discrete carboxyl-terminal segments of apolipoprotein E mediate lipoprotein association and protein oligomerization. J. Biol. Chem. 268: 15745–15750.

    CAS  PubMed  Google Scholar 

  • Williams, D. L., Llera-Moya, M., Thuahnai, S. T., Lund-Katz, S., Connelly, M. A., Azhar, S., Anantharamaiah, G. M., and Phillips, M. C. 2000, Binding and cross-linking studies show that scavenger receptor bi interacts with multiple sites in apolipoprotein A-I and identify the class A amphipathic alpha-helix as a recognition motif. J. Biol. Chem. 275: 18897–18904.

    CAS  PubMed  Google Scholar 

  • Williams, K. J., Feig, J. E., and Fisher, E. A. 2007, Cellular and molecular mechanisms for rapid regression of atherosclerosis: from bench top to potentially achievable clinical goal. Curr. Opin. Lipidol. 18: 443–450.

    CAS  PubMed  Google Scholar 

  • Wilson, C., Mau, T., Weisgraber, K., Wardell, M. R., Mahley, R. W., and Agard, D. A. 1994, Salt bridge relay triggers defective LDL receptor binding by a mutant apolipoprotein. Structure 2: 713–718.

    CAS  PubMed  Google Scholar 

  • Wilson, C., Wardell, M. R., Weisgraber, K. H., Mahley, R. W., and Agard, D. A. 1991, Three-dimensional structure of the LDL receptor-binding domain of human apolipoprotein E. Science 252: 1817–1822.

    CAS  PubMed  Google Scholar 

  • Wong, H. and Schotz, M. C. 2002, The lipase gene family. J. Lipid Res. 43: 993–999.

    CAS  PubMed  Google Scholar 

  • Yancey, P. G., Bortnick, A. E., Kellner-Weibel, G., Llera-Moya, M., Phillips, M. C., and Rothblat, G. H. 2003, Importance of different pathways of cellular cholesterol efflux. Arterioscler. Thromb. Vasc. Biol. 23: 712–719.

    CAS  PubMed  Google Scholar 

  • Yancey, P. G., Llera-Moya, M., Swarnaker, S., Monzo, P., Klein, S. M., Connelly, M. A., Johnson, W. J., Williams, D. L., and Rothblat, G. H. 2000, High density lipoprotein phospholipid composition is a major determinant of the bi-directional flux and net movement of cellular free cholesterol mediated by scavenger receptor BI. J. Biol. Chem. 275: 36596–36604.

    CAS  PubMed  Google Scholar 

  • Yokoyama, S. 2006, Assembly of high-density lipoprotein. Arterioscler. Thromb. Vasc. Biol. 26: 20–27.

    CAS  PubMed  Google Scholar 

  • Yokoyama, S., Kawai, Y., Tajima, S., and Yamamoto, A. 1985, Behavior of human apolipoprotein E in aqueous solutions and at interfaces. J. Biol. Chem. 260: 16375–16382.

    CAS  PubMed  Google Scholar 

  • Zannis, V. I., Chroni, A., and Krieger, M. 2006, Role of apoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL. J. Mol. Med. 84: 276–294.

    CAS  PubMed  Google Scholar 

  • Zhang, Y., da Silva, J. R., Reilly, M., Billheimer, J. T., Rothblat, G. H., and Rader, D. J. 2005, Hepatic expression of scavenger receptor class B type I (SR-BI) is a positive regulator of macrophage reverse cholesterol transport in vivo. J. Clin. Invest. 115: 2870–2874.

    CAS  PubMed  Google Scholar 

  • Zhang, Y., Vasudevan, S., Sojitrawala, R., Zhao, W., Cui, C., Xu, C., Fan, D., Newhouse, Y., Balestra, R., Jerome, W. G., Weisgraber, K., Li, Q., and Wang, J. 2007, A monomeric, biologically active, full-length human apolipoprotein E. Biochemistry 46: 10722–10732.

    CAS  PubMed  Google Scholar 

  • Zhang, Y., Zanotti, I., Reilly, M., Glick, J. M., Rothblat, G. H., and Rader, D. J. 2003, Overexpression of apoA-I promotes reverse cholesterol transport of cholesterol from macrophages to feces. Circulation 108: 661–663.

    CAS  PubMed  Google Scholar 

  • Zhu, K., Brubaker, G., and Smith, J. D. 2007, Large disk intermediate precedes formation of apolipoprotein A-I-dimyristoylphosphatidylcholine small disks. Biochemistry 46: 6299–6307.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to all our colleagues for their valuable contributions to the studies from our laboratory described here. Our research reported here was supported by NIH Grants HL22633 and HL 56083.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Phillips .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lund-Katz, S., Phillips, M.C. (2010). High Density Lipoprotein Structure–Function and Role in Reverse Cholesterol Transport. In: Harris, J. (eds) Cholesterol Binding and Cholesterol Transport Proteins:. Subcellular Biochemistry, vol 51. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8622-8_7

Download citation

Publish with us

Policies and ethics