Skip to main content

Electrophysiology of Islet Cells

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 654))

Abstract

Stimulus-Secretion Coupling (SSC) of pancreatic islet cells comprises electrical activity. Changes of the membrane potential (V m) are regulated by metabolism-dependent alterations in ion channel activity.

This coupling is best explored in β-cells. The effect of glucose is directly linked to mitochondrial metabolism as the ATP/ADP ratio determines the open probability of ATP-sensitive K+ channels (KATP channels). Nucleotide sensitivity and concentration in the direct vicinity of the channels are controlled by several factors including phospholipids, fatty acids, and kinases, e.g., creatine and adenylate kinase. Closure of KATP channels leads to depolarization of β-cells via a yet unknown depolarizing current. Ca2+ influx during action potentials (APs) results in an increase of the cytosolic Ca2+ concentration ([Ca2+]c) that triggers exocytosis. APs are elicited by the opening of voltage-dependent Na+ and/or Ca2+ channels and repolarized by voltage- and/or Ca2+-dependent K+ channels. At a constant stimulatory glucose concentration APs are clustered in bursts that are interrupted by hyperpolarized interburst phases. Bursting electrical activity induces parallel fluctuations in [Ca2+]c and insulin secretion. Bursts are terminated by IKslow consisting of currents through Ca2+-dependent K+ channels and KATP channels. This review focuses on structure, characteristics, physiological function, and regulation of ion channels in β-cells. Information about pharmacological drugs acting on KATP channels, KATP channelopathies, and influence of oxidative stress on KATP channel function is provided. One focus is the outstanding significance of L-type Ca2+ channels for insulin secretion. The role of less well characterized β-cell channels including voltage-dependent Na+ channels, volume sensitive anion channels (VSACs), transient receptor potential (TRP)-related channels, and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels is discussed. A model of β-cell oscillations provides insight in the interplay of the different channels to induce and maintain electrical activity. Regulation of β-cell electrical activity by hormones and the autonomous nervous system is discussed.

α- and δ-cells are also equipped with KATP channels, voltage-dependent Na+, K+, and Ca2+ channels. Yet the SSC of these cells is less clear and is not necessarily dependent on KATP channel closure. Different ion channels of α- and δ-cells are introduced and SSC in α-cells is described in special respect of paracrine effects of insulin and GABA secreted from β-cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Inagaki N, Gonoi T, Clement JPt, Namba N, Inazawa J, Gonzalez G, Aguilar-Bryan L, Seino S, Bryan J. Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science 1995;270: 1166–70.

    PubMed  CAS  Google Scholar 

  2. Clement JPt, Kunjilwar K, Gonzalez G, Schwanstecher M, Panten U, Aguilar-Bryan L, Bryan J. Association and stoichiometry of KATP channel subunits. Neuron 1997;18:827–38.

    PubMed  CAS  Google Scholar 

  3. Aguilar-Bryan L, Clement JPt, Gonzalez G, Kunjilwar K, Babenko A, Bryan J. Toward understanding the assembly and structure of KATP channels. Physiol Rev 1998;78:227–45.

    PubMed  CAS  Google Scholar 

  4. Babenko AP, Aguilar-Bryan L, Bryan J. A view of sur/KIR6.X, KATP channels. Annu Rev Physiol 1998;60:667–87.

    PubMed  CAS  Google Scholar 

  5. Bryan J, Munoz A, Zhang X, Düfer M, Drews G, Krippeit-Drews P, Aguilar-Bryan L. ABCC8 and ABCC9: ABC transporters that regulate K+ channels. Pflügers Arch 2007;453:703–18.

    PubMed  CAS  Google Scholar 

  6. Inagaki N, Gonoi T, Seino S. Subunit stoichiometry of the pancreatic beta-cell ATP-sensitive K+ channel. FEBS Lett 1997;409:232–6.

    PubMed  CAS  Google Scholar 

  7. Shyng S, Nichols CG. Octameric stoichiometry of the KATP channel complex. J Gen Physiol 1997;110:655–64.

    PubMed  CAS  Google Scholar 

  8. Aguilar-Bryan L, Bryan J. Molecular biology of adenosine triphosphate-sensitive potassium channels. Endocr Rev 1999;20:101–35.

    PubMed  CAS  Google Scholar 

  9. Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 1998;280:69–77.

    PubMed  CAS  Google Scholar 

  10. Babenko AP. KATP channels “vingt ans apres”: ATG to PDB to Mechanism. J Mol Cell Cardiol 2005;39:79–98.

    PubMed  CAS  Google Scholar 

  11. Moreau C, Prost AL, Derand R, Vivaudou M. SUR, ABC proteins targeted by KATP channel openers. J Mol Cell Cardiol 2005;38:951–63.

    PubMed  CAS  Google Scholar 

  12. Sharma N, Crane A, Clement JPt, Gonzalez G, Babenko AP, Bryan J, Aguilar-Bryan L. The C terminus of SUR1 is required for trafficking of KATP channels. J Biol Chem 1999;274:20628–32.

    PubMed  CAS  Google Scholar 

  13. Tucker SJ, Gribble FM, Zhao C, Trapp S, Ashcroft FM. Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptor. Nature 1997;387:179–83.

    PubMed  CAS  Google Scholar 

  14. Zerangue N, Schwappach B, Jan YN, Jan LY. A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane KATP channels. Neuron 1999;22:537–48.

    PubMed  CAS  Google Scholar 

  15. Mikhailov MV, Proks P, Ashcroft FM, Ashcroft SJ. Expression of functionally active ATP-sensitive K-channels in insect cells using baculovirus. FEBS Lett 1998;429:390–94.

    PubMed  CAS  Google Scholar 

  16. Tanabe K, Tucker SJ, Ashcroft FM, Proks P, Kioka N, Amachi T, Ueda K. Direct photoaffinity labeling of Kir6.2 by [gamma-(32)P]ATP-[gamma]4-azidoanilide. Biochem Biophys Res Commun 2000;272:316–9.

    PubMed  CAS  Google Scholar 

  17. Tanabe K, Tucker SJ, Matsuo M, Proks P, Ashcroft FM, Seino S, Amachi T, Ueda K. Direct photoaffinity labeling of the Kir6.2 subunit of the ATP-sensitive K+ channel by 8-azido-ATP. J Biol Chem 1999;274:3931–3.

    PubMed  CAS  Google Scholar 

  18. Vanoye CG, MacGregor GG, Dong K, Tang L, Buschmann AS, Hall AE, Lu M, Giebisch G, Hebert SC. The carboxyl termini of KATP channels bind nucleotides. J Biol Chem 2002;277: 23260–70.

    PubMed  CAS  Google Scholar 

  19. Reimann F, Ryder TJ, Tucker SJ, Ashcroft FM. The role of lysine 185 in the kir6.2 subunit of the ATP-sensitive channel in channel inhibition by ATP. J Physiol 1999;520 Pt 3:661–9.

    PubMed  CAS  Google Scholar 

  20. Babenko AP, Gonzalez G, Bryan J. The N-terminus of KIR6.2 limits spontaneous bursting and modulates the ATP-inhibition of KATP channels. Biochem Biophys Res Commun 1999;255:231–8.

    PubMed  CAS  Google Scholar 

  21. Babenko AP, Bryan J. Sur domains that associate with and gate KATP pores define a novel gatekeeper. J Biol Chem 2003;278:41577–80.

    PubMed  CAS  Google Scholar 

  22. Aguilar-Bryan L, Nichols CG, Wechsler SW, Clement JPt, Boyd AE, 3rd, Gonzalez G, Herrera-Sosa H, Nguy K, Bryan J, Nelson DA. Cloning of the beta cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science 1995;268:423–6.

    PubMed  CAS  Google Scholar 

  23. Chan KW, Zhang H, Logothetis DE. N-terminal transmembrane domain of the SUR controls trafficking and gating of Kir6 channel subunits. EMBO J 2003;22: 3833–43.

    PubMed  CAS  Google Scholar 

  24. Babenko AP, Bryan J. SUR-dependent modulation of KATP channels by an N-terminal KIR6.2 peptide. Defining intersubunit gating interactions. J Biol Chem 2002;277:43997–4004.

    PubMed  CAS  Google Scholar 

  25. Mikhailov MV, Campbell JD, de Wet H, Shimomura K, Zadek B, Collins RF, Sansom MS, Ford RC, Ashcroft FM. 3-D structural and functional characterization of the purified KATP channel complex Kir6.2-SUR1. EMBO J 2005;24:4166–75.

    PubMed  CAS  Google Scholar 

  26. Reimann F, Tucker SJ, Proks P, Ashcroft FM. Involvement of the n-terminus of Kir6.2 in coupling to the sulphonylurea receptor. J Physiol 1999;518 (Pt 2):325–36.

    PubMed  CAS  Google Scholar 

  27. Matsuo M, Kimura Y, Ueda K. KATP channel interaction with adenine nucleotides. J Mol Cell Cardiol 2005;38:907–16.

    PubMed  CAS  Google Scholar 

  28. Gribble FM, Tucker SJ, Ashcroft FM. The essential role of the Walker A motifs of SUR1 in K-ATP channel activation by Mg-ADP and diazoxide. EMBO J 1997;16:1145–52.

    PubMed  CAS  Google Scholar 

  29. Ueda K, Inagaki N, Seino S. MgADP antagonism to Mg2+-independent ATP binding of the sulfonylurea receptor SUR1. J Biol Chem 1997;272:22983–6.

    PubMed  CAS  Google Scholar 

  30. Babenko AP, Gonzalez G, Aguilar-Bryan L, Bryan J. Sulfonylurea receptors set the maximal open probability, ATP sensitivity and plasma membrane density of KATP channels. FEBS Lett 1999;445:131–6.

    PubMed  CAS  Google Scholar 

  31. de Wet H, Mikhailov MV, Fotinou C, Dreger M, Craig TJ, Venien-Bryan C, Ashcroft FM. Studies of the ATPase activity of the ABC protein SUR1. FEBS J 2007;274:3532–44.

    PubMed  Google Scholar 

  32. Gribble FM, Tucker SJ, Haug T, Ashcroft FM. MgATP activates the beta cell KATP channel by interaction with its SUR1 subunit. Proc Natl Acad Sci U S A 1998;95:7185–90.

    PubMed  CAS  Google Scholar 

  33. Seghers V, Nakazaki M, DeMayo F, Aguilar-Bryan L, Bryan J. Surl knockout mice. A model for KATP channel-independent regulation of insulin secretion. J Biol Chem 2000;275:9270–7.

    PubMed  CAS  Google Scholar 

  34. Miki T, Nagashima K, Tashiro F, Kotake K, Yoshitomi H, Tamamoto A, Gonoi T, Iwanaga T, Miyazaki J, Seino S. Defective insulin secretion and enhanced insulin action in KATP channel-deficient mice. Proc Natl Acad Sci U S A 1998;95:10402–6.

    PubMed  CAS  Google Scholar 

  35. Düfer M, Haspel D, Krippeit-Drews P, Aguilar-Bryan L, Bryan J, Drews G. Oscillations of membrane potential and cytosolic Ca2+ concentration in SUR1-/- beta cells. Diabetologia 2004;47:488–98.

    PubMed  Google Scholar 

  36. Eliasson L, Renström E, Ämmälä C, Berggren PO, Bertorello AM, Bokvist K, Chibalin A, Deeney JT, Flatt PR, Gabel J, Gromada J, Larsson O, Lindström P, Rhodes CJ, Rorsman P. PKC-dependent stimulation of exocytosis by sulfonylureas in pancreatic beta cells. Science 1996;271:813–5.

    PubMed  CAS  Google Scholar 

  37. Guiot Y, Stevens M, Marhfour I, Stiernet P, Mikhailov M, Ashcroft SJ, Rahier J, Henquin JC, Sempoux C. Morphological localisation of sulfonylurea receptor 1 in endocrine cells of human, mouse and rat pancreas. Diabetologia 2007;50:1889–99.

    PubMed  CAS  Google Scholar 

  38. Leung YM, Kwan EP, Ng B, Kang Y, Gaisano HY. SNAREing voltage-gated K+ and ATP-sensitive K+ channels: tuning beta-cell excitability with syntaxin-1A and other exocytotic proteins. Endocr Rev 2007;28:653–63.

    PubMed  CAS  Google Scholar 

  39. Eliasson L, Ma X, Renström E, Barg S, Berggren PO, Galvanovskis J, Gromada J, Jing X, Lundquist I, Salehi A, Sewing S, Rorsman P. SUR1 regulates PKA-independent cAMP-induced granule priming in mouse pancreatic B-cells. J Gen Physiol 2003;121:181–97.

    PubMed  CAS  Google Scholar 

  40. Ozaki N, Shibasaki T, Kashima Y, Miki T, Takahashi K, Ueno H, Sunaga Y, Yano H, Matsuura Y, Iwanaga T, Takai Y, Seino S. cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nat Cell Biol 2000;2:805–11.

    PubMed  CAS  Google Scholar 

  41. Nakazaki M, Crane A, Hu M, Seghers V, Ullrich S, Aguilar-Bryan L, Bryan J. cAMP-activated protein kinase-independent potentiation of insulin secretion by cAMP is impaired in SUR1 null islets. Diabetes 2002;51:3440–9.

    PubMed  CAS  Google Scholar 

  42. Cook DL, Hales CN. Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature 1984;311:271–3.

    PubMed  CAS  Google Scholar 

  43. Ashcroft FM, Harrison DE, Ashcroft SJ. Glucose induces closure of single potassium channels in isolated rat pancreatic beta-cells. Nature 1984;312:446–8.

    PubMed  CAS  Google Scholar 

  44. Ashcroft FM. Adenosine 5'-triphosphate-sensitive potassium channels. Annu Rev Neurosci 1988;11:97–118.

    PubMed  CAS  Google Scholar 

  45. Woll KH, Lönnendonker U, Neumcke B. ATP-sensitive potassium channels in adult mouse skeletal muscle: different modes of blockage by internal cations, ATP and tolbutamide. Pflugers Arch 1989;414:622–8.

    PubMed  CAS  Google Scholar 

  46. Trapp S, Proks P, Tucker SJ, Ashcroft FM. Molecular analysis of ATP-sensitive K channel gating and implications for channel inhibition by ATP. J Gen Physiol 1998;112:333–49.

    PubMed  CAS  Google Scholar 

  47. Schulze DU, Düfer M, Wieringa B, Krippeit-Drews P, Drews G. An adenylate kinase is involved in KATP channel regulation of mouse pancreatic beta cells. Diabetologia 2007;50:2126–34.

    PubMed  CAS  Google Scholar 

  48. Tarasov AI, Girard CA, Ashcroft FM. ATP sensitivity of the ATP-sensitive K+ channel in intact and permeabilized pancreatic beta-cells. Diabetes 2006;55:2446–54.

    PubMed  CAS  Google Scholar 

  49. Detimary P, Dejonghe S, Ling Z, Pipeleers D, Schuit F, Henquin JC. The changes in adenine nucleotides measured in glucose-stimulated rodent islets occur in beta cells but not in alpha cells and are also observed in human islets. J Biol Chem 1998;273:33905–8.

    PubMed  CAS  Google Scholar 

  50. Niki I, Ashcroft FM, Ashcroft SJ. The dependence on intracellular ATP concentration of ATP-sensitive K-channels and of Na,K-ATPase in intact HIT-T15 beta-cells. FEBS Lett 1989;257:361–4.

    PubMed  CAS  Google Scholar 

  51. Bränström R, Aspinwall CA, Välimäki S, Ostensson CG, Tibell A, Eckhard M, Brandhorst H, Corkey BE, Berggren PO, Larsson O. Long-chain CoA esters activate human pancreatic beta-cell KATP channels: potential role in Type 2 diabetes. Diabetologia 2004;47:277–83.

    PubMed  Google Scholar 

  52. Bränström R, Corkey BE, Berggren PO, Larsson O. Evidence for a unique long chain acyl-CoA ester binding site on the ATP-regulated potassium channel in mouse pancreatic beta cells. J Biol Chem 1997;272:17390–4.

    PubMed  Google Scholar 

  53. Bränström R, Leibiger IB, Leibiger B, Corkey BE, Berggren PO, Larsson O. Long chain coenzyme A esters activate the pore-forming subunit (Kir6. 2) of the ATP-regulated potassium channel. J Biol Chem 1998;273:31395–400.

    PubMed  Google Scholar 

  54. Larsson O, Deeney JT, Bränström R, Berggren PO, Corkey BE. Activation of the ATP-sensitive K+ channel by long chain acyl-CoA. A role in modulation of pancreatic beta-cell glucose sensitivity. J Biol Chem 1996;271:10623–6.

    PubMed  CAS  Google Scholar 

  55. Baukrowitz T, Schulte U, Oliver D, Herlitze S, Krauter T, Tucker SJ, Ruppersberg JP, Fakler B. PIP2 and PIP as determinants for ATP inhibition of KATP channels. Science 1998;282:1141–4.

    PubMed  CAS  Google Scholar 

  56. Baukrowitz T, Fakler B. KATP channels gated by intracellular nucleotides and phospholipids. Eur J Biochem 2000;267:5842–8.

    PubMed  CAS  Google Scholar 

  57. Schulze D, Rapedius M, Krauter T, Baukrowitz T. Long-chain acyl-CoA esters and phosphatidylinositol phosphates modulate ATP inhibition of KATP channels by the same mechanism. J Physiol 2003;552:357–67.

    PubMed  CAS  Google Scholar 

  58. Rapedius M, Soom M, Shumilina E, Schulze D, Schonherr R, Kirsch C, Lang F, Tucker SJ, Baukrowitz T. Long chain CoA esters as competitive antagonists of phosphatidylinositol 4,5-bisphosphate activation in Kir channels. J Biol Chem 2005;280:30760–67.

    PubMed  CAS  Google Scholar 

  59. Shyng SL, Cukras CA, Harwood J, Nichols CG. Structural determinants of PIP2 regulation of inward rectifier KATP channels. J Gen Physiol 2000;116:599–608.

    PubMed  CAS  Google Scholar 

  60. Shyng SL, Nichols CG. Membrane phospholipid control of nucleotide sensitivity of KATP channels. Science 1998;282:1138–41.

    PubMed  CAS  Google Scholar 

  61. Dukes ID, McIntyre MS, Mertz RJ, Philipson LH, Roe MW, Spencer B, Worley JF, 3rd. Dependence on NADH produced during glycolysis for beta-cell glucose signaling. J Biol Chem 1994;269:10979–82.

    PubMed  CAS  Google Scholar 

  62. Eto K, Tsubamoto Y, Terauchi Y, Sugiyama T, Kishimoto T, Takahashi N, Yamauchi N, Kubota N, Murayama S, Aizawa T, Akanuma Y, Aizawa S, Kasai H, Yazaki Y, Kadowaki T. Role of NADH shuttle system in glucose-induced activation of mitochondrial metabolism and insulin secretion. Science 1999;283: 981–5.

    PubMed  CAS  Google Scholar 

  63. Lenzen S. Effects of alpha-ketocarboxylic acids and 4-pentenoic acid on insulin secretion from the perfused rat pancreas. Biochem Pharmacol 1978;27:1321–4.

    PubMed  CAS  Google Scholar 

  64. Sener A, Kawazu S, Hutton JC, Boschero AC, Devis G, Somers G, Herchuelz A, Malaisse WJ. The stimulus-secretion coupling of glucose-induced insulin release. Effect of exogenous pyruvate on islet function. Biochem J 1978;176:217–32.

    PubMed  CAS  Google Scholar 

  65. Zawalich WS, Zawalich KC. Influence of pyruvic acid methyl ester on rat pancreatic islets. Effects on insulin secretion, phosphoinositide hydrolysis, and sensitization of the beta cell. J Biol Chem 1997;272:3527–31.

    PubMed  CAS  Google Scholar 

  66. Lenzen S, Lerch M, Peckmann T, Tiedge M. Differential regulation of [Ca2+]i oscillations in mouse pancreatic islets by glucose, alpha-ketoisocaproic acid, glyceraldehyde and glycolytic intermediates. Biochim Biophys Acta 2000;1523:65–72.

    PubMed  CAS  Google Scholar 

  67. Düfer M, Krippeit-Drews P, Buntinas L, Siemen D, Drews G. Methyl pyruvate stimulates pancreatic beta-cells by a direct effect on KATP channels, and not as a mitochondrial substrate. Biochem J 2002;368:817–25.

    PubMed  Google Scholar 

  68. Bränström R, Efendic S, Berggren PO, Larsson O. Direct inhibition of the pancreatic beta-cell ATP-regulated potassium channel by alpha-ketoisocaproate. J Biol Chem 1998;273:14113–8.

    PubMed  Google Scholar 

  69. Lembert N, Idahl LA. Alpha-ketoisocaproate is not a true substrate for ATP production by pancreatic beta-cell mitochondria. Diabetes 1998;47:339–44.

    PubMed  CAS  Google Scholar 

  70. Gerbitz KD, Gempel K, Brdiczka D. Mitochondria and diabetes. Genetic, biochemical, and clinical implications of the cellular energy circuit. Diabetes 1996;45: 113–26.

    PubMed  CAS  Google Scholar 

  71. Dzeja PP, Terzic A. Phosphotransfer networks and cellular energetics. J Exp Biol 2003;206:2039–47.

    PubMed  CAS  Google Scholar 

  72. Krippeit-Drews P, Bäcker M, Düfer M, Drews G. Phosphocreatine as a determinant of KATP channel activity in pancreatic beta-cells. Pflügers Arch 2003;445:556–62.

    PubMed  CAS  Google Scholar 

  73. Crawford RM, Ranki HJ, Botting CH, Budas GR, Jovanovic A. Creatine kinase is physically associated with the cardiac ATP-sensitive K+ channel in vivo. FASEB J 2002;16:102–4.

    PubMed  CAS  Google Scholar 

  74. Stanojevic V, Habener JF, Holz GG, Leech CA. Cytosolic adenylate kinases regulate K-ATP channel activity in human beta-cells. Biochem Biophys Res Commun 2008;368:614–9.

    PubMed  CAS  Google Scholar 

  75. Atwater I, Ribalet B, Rojas E. Cyclic changes in potential and resistance of the beta-cell membrane induced by glucose in islets of Langerhans from mouse. J Physiol 1978;278:117–39.

    PubMed  CAS  Google Scholar 

  76. Meissner HP, Henquin JC, Preissler M. Potassium dependence of the membrane potential of pancreatic B-cells. FEBS Lett 1978;94:87–9.

    PubMed  CAS  Google Scholar 

  77. Misler S, Falke LC, Gillis K, McDaniel ML. A metabolite-regulated potassium channel in rat pancreatic B cells. Proc Natl Acad Sci U S A 1986;83:7119–23.

    PubMed  CAS  Google Scholar 

  78. Sehlin J, Taljedal IB. Glucose-induced decrease in Rb+ permeability in pancreatic beta cells. Nature 1975;253:635–6.

    PubMed  CAS  Google Scholar 

  79. Henquin JC. D-glucose inhibits potassium efflux from pancreatic islet cells. Nature 1978;271:271–3.

    PubMed  CAS  Google Scholar 

  80. Rorsman P, Trube G. Glucose dependent K+-channels in pancreatic beta-cells are regulated by intracellular ATP. Pflügers Arch 1985;405:305–9.

    PubMed  CAS  Google Scholar 

  81. Smith PA, Ashcroft FM, Rorsman P. Simultaneous recordings of glucose dependent electrical activity and ATP-regulated K+-currents in isolated mouse pancreatic beta-cells. FEBS Lett 1990;261:187–90.

    PubMed  CAS  Google Scholar 

  82. Ashcroft FM, Rorsman P. Electrophysiology of the pancreatic beta-cell. Prog Biophys Mol Biol 1989;54:87–143.

    PubMed  CAS  Google Scholar 

  83. Dean PM, Matthews EK. Electrical activity in pancreatic islet cells. Nature 1968;219:389–90.

    PubMed  CAS  Google Scholar 

  84. Trube G, Rorsman P, Ohno-Shosaku T. Opposite effects of tolbutamide and diazoxide on the ATP-dependent K+ channel in mouse pancreatic beta-cells. Pflügers Arch 1986;407:493–9.

    PubMed  CAS  Google Scholar 

  85. Henquin JC. A minimum of fuel is necessary for tolbutamide to mimic the effects of glucose on electrical activity in pancreatic beta-cells. Endocrinology 1998;139: 993–8.

    PubMed  CAS  Google Scholar 

  86. Gillis KD, Gee WM, Hammoud A, McDaniel ML, Falke LC, Misler S. Effects of sulfonamides on a metabolite-regulated ATPi-sensitive K+ channel in rat pancreatic B-cells. Am J Physiol 1989;257:C1119–27.

    PubMed  CAS  Google Scholar 

  87. Krauter T, Ruppersberg JP, Baukrowitz T. Phospholipids as modulators of KATP channels: distinct mechanisms for control of sensitivity to sulphonylureas, K+ channel openers, and ATP. Mol Pharmacol 2001;59: 1086–93.

    PubMed  CAS  Google Scholar 

  88. Koster JC, Sha Q, Nichols CG. Sulfonylurea and K+-channel opener sensitivity of KATP channels. Functional coupling of Kir6.2 and SUR1 subunits. J Gen Physiol 1999;114:203–13.

    PubMed  CAS  Google Scholar 

  89. Klein A, Lichtenberg J, Stephan D, Quast U. Lipids modulate ligand binding to sulphonylurea receptors. Br J Pharmacol 2005;145:907–15.

    PubMed  CAS  Google Scholar 

  90. Zünkler BJ, Lins S, Ohno-Shosaku T, Trube G, Panten U. Cytosolic ADP enhances the sensitivity to tolbutamide of ATP-dependent K+ channels from pancreatic B-cells. FEBS Lett 1988;239:241–4.

    PubMed  Google Scholar 

  91. Gribble FM, Tucker SJ, Ashcroft FM. The interaction of nucleotides with the tolbutamide block of cloned ATP-sensitive K+ channel currents expressed in Xenopus oocytes: a reinterpretation. J Physiol 1997;504 (Pt 1): 35–45.

    PubMed  CAS  Google Scholar 

  92. Babenko AP, Gonzalez G, Bryan J. The tolbutamide site of SUR1 and a mechanism for its functional coupling to KATP channel closure. FEBS Lett 1999;459:367–76.

    PubMed  CAS  Google Scholar 

  93. Dörschner H, Brekardin E, Uhde I, Schwanstecher C, Schwanstecher M. Stoichiometry of sulfonylurea-induced ATP-sensitive potassium channel closure. Mol Pharmacol 1999;55:1060–66.

    PubMed  Google Scholar 

  94. Schmid-Antomarchi H, de Weille J, Fosset M, Lazdunski M. The antidiabetic sulfonylurea glibenclamide is a potent blocker of the ATP-modulated K+ channel in insulin secreting cells. Biochem Biophys Res Commun 1987;146:21–25.

    PubMed  CAS  Google Scholar 

  95. Gaines KL, Hamilton S, Boyd AE, 3rd. Characterization of the sulfonylurea receptor on beta cell membranes. J Biol Chem 1988;263:2589–92.

    PubMed  CAS  Google Scholar 

  96. Mikhailov MV, Mikhailova EA, Ashcroft SJ. Molecular structure of the glibenclamide binding site of the beta-cell KATP channel. FEBS Lett 2001;499:154–60.

    PubMed  CAS  Google Scholar 

  97. Chachin M, Yamada M, Fujita A, Matsuoka T, Matsushita K, Kurachi Y. Nateglinide, a D-phenylalanine derivative lacking either a sulfonylurea or benzamido moiety, specifically inhibits pancreatic beta-cell-type KATP channels. J Pharmacol Exp Ther 2003;304:1025–32.

    PubMed  CAS  Google Scholar 

  98. Hansen AM, Christensen IT, Hansen JB, Carr RD, Ashcroft FM, Wahl P. Differential interactions of nateglinide and repaglinide on the human beta-cell sulphonylurea receptor 1. Diabetes 2002;51:2789–95.

    PubMed  CAS  Google Scholar 

  99. Fuhlendorff J, Rorsman P, Kofod H, Brand CL, Rolin B, MacKay P, Shymko R, Carr RD. Stimulation of insulin release by repaglinide and glibenclamide involves both common and distinct processes. Diabetes 1998;47: 345–51.

    PubMed  CAS  Google Scholar 

  100. Hansen AM, Hansen JB, Carr RD, Ashcroft FM, Wahl P. Kir6.2-dependent high-affinity repaglinide binding to beta-cell KATP channels. Br J Pharmacol 2005;144:551–57.

    PubMed  CAS  Google Scholar 

  101. Dabrowski M, Wahl P, Holmes WE, Ashcroft FM. Effect of repaglinide on cloned beta cell, cardiac and smooth muscle types of ATP-sensitive potassium channels. Diabetologia 2001;44:747–56.

    PubMed  CAS  Google Scholar 

  102. Henquin JC, Meissner HP. Opposite effects of tolbutamide and diazoxide on 86Rb+ fluxes and membrane potential in pancreatic B cells. Biochem Pharmacol 1982;31:1407–15.

    PubMed  CAS  Google Scholar 

  103. Dunne MJ, Illot MC, Peterson OH. Interaction of diazoxide, tolbutamide and ATP4- on nucleotide-dependent K+ channels in an insulin-secreting cell line. J Membr Biol 1987;99:215–24.

    PubMed  CAS  Google Scholar 

  104. Kozlowski RZ, Hales CN, Ashford ML. Dual effects of diazoxide on ATP-K+ currents recorded from an insulin-secreting cell line. Br J Pharmacol 1989;97:1039–50.

    PubMed  CAS  Google Scholar 

  105. Larsson O, Ämmälä C, Bokvist K, Fredholm B, Rorsman P. Stimulation of the KATP channel by ADP and diazoxide requires nucleotide hydrolysis in mouse pancreatic beta-cells. J Physiol 1993;463:349–65.

    PubMed  CAS  Google Scholar 

  106. Shyng S, Ferrigni T, Nichols CG. Regulation of KATP channel activity by diazoxide and MgADP. Distinct functions of the two nucleotide binding folds of the sulfonylurea receptor. J Gen Physiol 1997;110:643–54.

    PubMed  CAS  Google Scholar 

  107. Matsuoka T, Matsushita K, Katayama Y, Fujita A, Inageda K, Tanemoto M, Inanobe A, Yamashita S, Matsuzawa Y, Kurachi Y. C-terminal tails of sulfonylurea receptors control ADP-induced activation and diazoxide modulation of ATP-sensitive K+ channels. Circ Res 2000;87:873–80.

    PubMed  CAS  Google Scholar 

  108. Babenko AP, Gonzalez G, Bryan J. Pharmaco-topology of sulfonylurea receptors. Separate domains of the regulatory subunits of KATP channel isoforms are required for selective interaction with K+ channel openers. J Biol Chem 2000;275:717–20.

    PubMed  CAS  Google Scholar 

  109. Gill GV, Rauf O, MacFarlane IA. Diazoxide treatment for insulinoma: a national UK survey. Postgrad Med J 1997;73:640–1.

    PubMed  CAS  Google Scholar 

  110. Maedler K, Storling J, Sturis J, Zuellig RA, Spinas GA, Arkhammar PO, Mandrup-Poulsen T, Donath MY. Glucose- and interleukin-1beta-induced beta-cell apoptosis requires Ca2+ influx and extracellular signal-regulated kinase (ERK) 1/2 activation and is prevented by a sulfonylurea receptor 1/inwardly rectifying K+ channel 6.2 (SUR/Kir6.2) selective potassium channel opener in human islets. Diabetes 2004;53:1706–13.

    PubMed  CAS  Google Scholar 

  111. Kullin M, Li Z, Hansen JB, Bjork E, Sandler S, Karlsson FA. KATP channel openers protect rat islets against the toxic effect of streptozotocin. Diabetes 2000;49:1131–6.

    PubMed  CAS  Google Scholar 

  112. Sandler S, Andersson AK, Larsson J, Makeeva N, Olsen T, Arkhammar PO, Hansen JB, Karlsson FA, Welsh N. Possible role of an ischemic preconditioning-like response mechanism in KATP channel opener-mediated protection against streptozotocin-induced suppression of rat pancreatic islet function. Biochem Pharmacol 2008;76: 1748–56.

    PubMed  CAS  Google Scholar 

  113. Krippeit-Drews P, Krämer C, Welker S, Lang F, Ammon HP, Drews G. Interference of H2O2 with stimulus-secretion coupling in mouse pancreatic beta-cells. J Physiol 514 1999; (Pt 2):471–81.

    PubMed  CAS  Google Scholar 

  114. Akesson B, Lundquist I. Nitric oxide and hydroperoxide affect islet hormone release and Ca2+ efflux. Endocrine 1999;11:99–107.

    PubMed  CAS  Google Scholar 

  115. Krippeit-Drews P, Lang F, Häussinger D, Drews G. H2O2 induced hyperpolarization of pancreatic B-cells. Pflügers Arch 1994;426:552–4.

    PubMed  CAS  Google Scholar 

  116. Nakazaki M, Kakei M, Koriyama N, Tanaka H. Involvement of ATP-sensitive K+ channels in free radical-mediated inhibition of insulin secretion in rat pancreatic beta-cells. Diabetes 1995;44:878–83.

    PubMed  CAS  Google Scholar 

  117. Krippeit-Drews P, Kröncke KD, Welker S, Zempel G, Roenfeldt M, Ammon HP, Lang F, Drews G. The effects of nitric oxide on the membrane potential and ionic currents of mouse pancreatic B cells. Endocrinology 1995;136:5363–9.

    PubMed  CAS  Google Scholar 

  118. Tsuura Y, Ishida H, Hayashi S, Sakamoto K, Horie M, Seino Y. Nitric oxide opens ATP-sensitive K+ channels through suppression of phosphofructokinase activity and inhibits glucose-induced insulin release in pancreatic beta cells. J Gen Physiol 1994;104:1079–98.

    PubMed  CAS  Google Scholar 

  119. Drews G, Krämer C, Düfer M, Krippeit-Drews P. Contrasting effects of alloxan on islets and single mouse pancreatic beta-cells. Biochem J 352 Pt 2000;2:389–97.

    Google Scholar 

  120. Islam MS, Berggren PO, Larsson O. Sulfhydryl oxidation induces rapid and reversible closure of the ATP-regulated K+ channel in the pancreatic beta-cell. FEBS Lett 1993;319:128–32.

    PubMed  CAS  Google Scholar 

  121. Krippeit-Drews P, Zempel G, Ammon HP, Lang F, Drews G. Effects of membrane-permeant and -impermeant thiol reagents on Ca2+ and K+ channel currents of mouse pancreatic B cells. Endocrinology 1995;136:464–67.

    PubMed  CAS  Google Scholar 

  122. Drews G, Krämer C, Krippeit-Drews P. Dual effect of NO on K+ ATP current of mouse pancreatic B-cells: stimulation by deenergizing mitochondria and inhibition by direct interaction with the channel. Biochim Biophys Acta 2000;1464:62–8.

    PubMed  CAS  Google Scholar 

  123. Sunouchi T, Suzuki K, Nakayama K, Ishikawa T. Dual effect of nitric oxide on ATP-sensitive K+ channels in rat pancreatic beta cells. Pflugers Arch 2008;456:573–9.

    PubMed  CAS  Google Scholar 

  124. Dunne MJ, Cosgrove KE, Shepherd RM, Aynsley-Green A, Lindley KJ. Hyperinsulinism in infancy: from basic science to clinical disease. Physiol Rev 2004;84:239–75.

    PubMed  CAS  Google Scholar 

  125. Ashcroft FM. ATP-sensitive potassium channelopathies: focus on insulin secretion. J Clin Invest 2005;115:2047–58.

    PubMed  CAS  Google Scholar 

  126. Reimann F, Huopio H, Dabrowski M, Proks P, Gribble FM, Laakso M, Otonkoski T, Ashcroft FM. Characterisation of new KATP-channel mutations associated with congenital hyperinsulinism in the Finnish population. Diabetologia 2003;46:241–9.

    PubMed  CAS  Google Scholar 

  127. Crane A, Aguilar-Bryan L. Assembly, maturation, and turnover of KATP channel subunits. J Biol Chem 2004;279:9080–90.

    PubMed  CAS  Google Scholar 

  128. Taschenberger G, Mougey A, Shen S, Lester LB, LaFranchi S, Shyng SL. Identification of a familial hyperinsulinism-causing mutation in the sulfonylurea receptor 1 that prevents normal trafficking and function of KATP channels. J Biol Chem 2002;277:17139–46.

    PubMed  CAS  Google Scholar 

  129. Huopio H, Reimann F, Ashfield R, Komulainen J, Lenko HL, Rahier J, Vauhkonen I, Kere J, Laakso M, Ashcroft F, Otonkoski T. Dominantly inherited hyperinsulinism caused by a mutation in the sulfonylurea receptor type 1. J Clin Invest 2000;106:897–906.

    PubMed  CAS  Google Scholar 

  130. Straub SG, Cosgrove KE, Ammala C, Shepherd RM, O'Brien RE, Barnes PD, Kuchinski N, Chapman JC, Schaeppi M, Glaser B, Lindley KJ, Sharp GW, Aynsley-Green A, Dunne MJ. Hyperinsulinism of infancy: the regulated release of insulin by KATP channel-independent pathways. Diabetes 2001;50:329–39.

    PubMed  CAS  Google Scholar 

  131. Thornton PS, MacMullen C, Ganguly A, Ruchelli E, Steinkrauss L, Crane A, Aguilar-Bryan L, Stanley CA. Clinical and molecular characterization of a dominant form of congenital hyperinsulinism caused by a mutation in the high-affinity sulfonylurea receptor. Diabetes 2003;52:2403–410.

    PubMed  CAS  Google Scholar 

  132. Gloyn AL, Pearson ER, Antcliff JF, Proks P, Bruining GJ, Slingerland AS, Howard N, Srinivasan S, Silva JM, Molnes J, Edghill EL, Frayling TM, Temple IK, Mackay D, Shield JP, Sumnik Z, van Rhijn A, Wales JK, Clark P, Gorman S, Aisenberg J, Ellard S, Njolstad PR, Ashcroft FM, Hattersley AT. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 2004;350:1838–49.

    PubMed  CAS  Google Scholar 

  133. Hattersley AT, Ashcroft FM. Activating mutations in Kir6.2 and neonatal diabetes: new clinical syndromes, new scientific insights, and new therapy. Diabetes 2005;54:2503–13.

    PubMed  CAS  Google Scholar 

  134. Thomas PM, Cote GJ, Wohllk N, Haddad B, Mathew PM, Rabl W, Aguilar-Bryan L, Gagel RF, Bryan J. Mutations in the sulfonylurea receptor gene in familial persistent hyperinsulinemic hypoglycemia of infancy. Science 1995;268:426–29.

    PubMed  CAS  Google Scholar 

  135. Patch AM, Flanagan SE, Boustred C, Hattersley AT, Ellard S. Mutations in the ABCC8 gene encoding the SUR1 subunit of the KATP channel cause transient neonatal diabetes, permanent neonatal diabetes or permanent diabetes diagnosed outside the neonatal period. Diabetes Obes Metab 2007;9 Suppl 2:28–39.

    PubMed  CAS  Google Scholar 

  136. Vaxillaire M, Dechaume A, Busiah K, Cave H, Pereira S, Scharfmann R, de Nanclares GP, Castano L, Froguel P, Polak M. New ABCC8 mutations in relapsing neonatal diabetes and clinical features. Diabetes 2007;56:1737–41.

    PubMed  CAS  Google Scholar 

  137. Klupa T, Kowalska I, Wyka K, Skupien J, Patch AM, Flanagan SE, Noczynska A, Arciszewska M, Ellard S, Hattersley AT, Sieradzki J, Mlynarski W, Malecki MT. Mutations in the ABCC8 gene are associated with a variable clinical phenotype. Clin Endocrinol 2009; 71: 358–62.

    CAS  Google Scholar 

  138. Riedel MJ, Boora P, Steckley D, de Vries G, Light PE. Kir6.2 polymorphisms sensitize beta-cell ATP-sensitive potassium channels to activation by acyl CoAs: a possible cellular mechanism for increased susceptibility to type 2 diabetes? Diabetes 2003;52:2630–5.

    PubMed  CAS  Google Scholar 

  139. Gloyn AL, Reimann F, Girard C, Edghill EL, Proks P, Pearson ER, Temple IK, Mackay DJ, Shield JP, Freedenberg D, Noyes K, Ellard S, Ashcroft FM, Gribble FM, Hattersley AT. Relapsing diabetes can result from moderately activating mutations in KCNJ11. Hum Mol Genet 2005;14:925–34.

    PubMed  CAS  Google Scholar 

  140. Proks P, Antcliff JF, Lippiat J, Gloyn AL, Hattersley AT, Ashcroft FM. Molecular basis of Kir6.2 mutations associated with neonatal diabetes or neonatal diabetes plus neurological features. Proc Natl Acad Sci U S A 2004;101:17539–44.

    PubMed  CAS  Google Scholar 

  141. de Wet H, Rees MG, Shimomura K, Aittoniemi J, Patch AM, Flanagan SE, Ellard S, Hattersley AT, Sansom MS, Ashcroft FM. Increased ATPase activity produced by mutations at arginine-1380 in nucleotide-binding domain 2 of ABCC8 causes neonatal diabetes. Proc Natl Acad Sci U S A 2007;104:18988–92.

    PubMed  Google Scholar 

  142. Ellard S, Flanagan SE, Girard CA, Patch AM, Harries LW, Parrish A, Edghill EL, Mackay DJ, Proks P, Shimomura K, Haberland H, Carson DJ, Shield JP, Hattersley AT, Ashcroft FM. Permanent neonatal diabetes caused by dominant, recessive, or compound heterozygous SUR1 mutations with opposite functional effects. Am J Hum Genet 2007;81:375–82.

    PubMed  CAS  Google Scholar 

  143. Schwanstecher C, Meyer U, Schwanstecher M. KIR6.2 polymorphism predisposes to type 2 diabetes by inducing overactivity of pancreatic beta-cell ATP-sensitive K+ channels. Diabetes 2002;51:875–9.

    PubMed  CAS  Google Scholar 

  144. Tarasov AI, Girard CA, Larkin B, Tammaro P, Flanagan SE, Ellard S, Ashcroft FM. Functional analysis of two Kir6.2 (KCNJ11) mutations, K170T and E322K, causing neonatal diabetes. Diabetes Obes Metab 2007;9 Suppl 2:46–55.

    PubMed  CAS  Google Scholar 

  145. Slingerland AS, Hurkx W, Noordam K, Flanagan SE, Jukema JW, Meiners LC, Bruining GJ, Hattersley AT, Hadders-Algra M. Sulphonylurea therapy improves cognition in a patient with the V59M KCNJ11 mutation. Diabet Med 2008;25:277–81.

    PubMed  CAS  Google Scholar 

  146. Pearson ER, Flechtner I, Njolstad PR, Malecki MT, Flanagan SE, Larkin B, Ashcroft FM, Klimes I, Codner E, Iotova V, Slingerland AS, Shield J, Robert JJ, Holst JJ, Clark PM, Ellard S, Sovik O, Polak M, Hattersley AT. Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. N Engl J Med 2006;355:467–77.

    PubMed  CAS  Google Scholar 

  147. Flechtner I, de Lonlay P, Polak M. Diabetes and hypoglycaemia in young children and mutations in the Kir6.2 subunit of the potassium channel: therapeutic consequences. Diabetes Metab 2006;32:569–80.

    PubMed  CAS  Google Scholar 

  148. Rafiq M, Flanagan SE, Patch AM, Shields BM, Ellard S, Hattersley AT. Effective treatment with oral sulfonylureas in patients with diabetes due to sulfonylurea receptor 1 (SUR1) mutations. Diabetes Care 2008;31:204–9.

    PubMed  CAS  Google Scholar 

  149. Gloyn AL, Weedon MN, Owen KR, Turner MJ, Knight BA, Hitman G, Walker M, Levy JC, Sampson M, Halford S, McCarthy MI, Hattersley AT, Frayling TM. Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes 2003;52:568–72.

    PubMed  CAS  Google Scholar 

  150. Laukkanen O, Pihlajamaki J, Lindström J, Eriksson J, Valle TT, Hämäläinen H, Ilanne-Parikka P, Keinänen-Kiukaanniemi S, Tuomilehto J, Uusitupa M, Laakso M. Polymorphisms of the SUR1 (ABCC8) and Kir6.2 (KCNJ11) genes predict the conversion from impaired glucose tolerance to type 2 diabetes. The Finnish Diabetes Prevention Study. J Clin Endocrinol Metab 2004;89:6286–90.

    PubMed  CAS  Google Scholar 

  151. Chistiakov DA, Potapov VA, Khodirev DC, Shamkhalova MS, Shestakova MV, Nosikov VV. Genetic variations in the pancreatic ATP-sensitive potassium channel, beta-cell dysfunction, and susceptibility to type 2 diabetes. Acta Diabetol 2009;46:43–9.

    PubMed  CAS  Google Scholar 

  152. Vaxillaire M, Veslot J, Dina C, Proenca C, Cauchi S, Charpentier G, Tichet J, Fumeron F, Marre M, Meyre D, Balkau B, Froguel P. Impact of common type 2 diabetes risk polymorphisms in the DESIR prospective study. Diabetes 2008;57:244–54.

    PubMed  CAS  Google Scholar 

  153. Sesti G, Laratta E, Cardellini M, Andreozzi F, Del Guerra S, Irace C, Gnasso A, Grupillo M, Lauro R, Hribal ML, Perticone F, Marchetti P. The E23K variant of KCNJ11 encoding the pancreatic beta-cell adenosine 5'-triphosphate-sensitive potassium channel subunit Kir6.2 is associated with an increased risk of secondary failure to sulfonylurea in patients with type 2 diabetes. J Clin Endocrinol Metab 2006;91: 2334–39.

    PubMed  CAS  Google Scholar 

  154. Nielsen EM, Hansen L, Carstensen B, Echwald SM, Drivsholm T, Glumer C, Thorsteinsson B, Borch-Johnsen K, Hansen T, Pedersen O. The E23K variant of Kir6.2 associates with impaired post-OGTT serum insulin response and increased risk of type 2 diabetes. Diabetes 2003;52:573–7.

    PubMed  CAS  Google Scholar 

  155. Tschritter O, Stumvoll M, Machicao F, Holzwarth M, Weisser M, Maerker E, Teigeler A, Häring H, Fritsche A. The prevalent Glu23Lys polymorphism in the potassium inward rectifier 6.2 (KIR6.2) gene is associated with impaired glucagon suppression in response to hyperglycemia. Diabetes 2002;51:2854–60.

    PubMed  CAS  Google Scholar 

  156. Riedel MJ, Steckley DC, Light PE. Current status of the E23K Kir6.2 polymorphism: implications for type-2 diabetes. Hum Genet 2005;116:133–45.

    PubMed  CAS  Google Scholar 

  157. Mears D. Regulation of insulin secretion in islets of Langerhans by Ca2+ channels. J Membr Biol 2004;200:57–66.

    PubMed  CAS  Google Scholar 

  158. Yang SN, Berggren PO. Beta-cell CaV channel regulation in physiology and pathophysiology. Am J Physiol Endocrinol Metab 2005;288:E16–28.

    PubMed  CAS  Google Scholar 

  159. Yang SN, Berggren PO. The role of voltage-gated calcium channels in pancreatic beta-cell physiology and pathophysiology. Endocr Rev 2006;27:621–76.

    PubMed  CAS  Google Scholar 

  160. Catterall WA. Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 2000;16:521–55.

    PubMed  CAS  Google Scholar 

  161. Davies A, Hendrich J, Van Minh AT, Wratten J, Douglas L, Dolphin AC. Functional biology of the alpha2delta subunits of voltage-gated calcium channels. Trends Pharmacol Sci 2007;28:220–8.

    PubMed  CAS  Google Scholar 

  162. Arikkath J, Campbell KP. Auxiliary subunits: essential components of the voltage-gated calcium channel complex. Curr Opin Neurobiol 2003;13:298–307.

    PubMed  CAS  Google Scholar 

  163. Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J. International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 2005;57:411–25.

    PubMed  CAS  Google Scholar 

  164. Gilon P, Yakel J, Gromada J, Zhu Y, Henquin JC, Rorsman P. G protein-dependent inhibition of L-type Ca2+ currents by acetylcholine in mouse pancreatic B-cells. J Physiol 1997;499 (Pt 1):65–76.

    PubMed  CAS  Google Scholar 

  165. Plant TD. Properties and calcium-dependent inactivation of calcium currents in cultured mouse pancreatic B-cells. J Physiol 1988;404:731–47.

    PubMed  CAS  Google Scholar 

  166. Satin LS, Tavalin SJ, Kinard TA, Teague J. Contribution of L- and non-L-type calcium channels to voltage-gated calcium current and glucose-dependent insulin secretion in HIT-T15 cells. Endocrinology 1995;136:4589–601.

    PubMed  CAS  Google Scholar 

  167. Braun M, Ramracheya R, Bengtsson M, Zhang Q, Karanauskaite J, Partridge C, Johnson PR, Rorsman P. Voltage-gated ion channels in human pancreatic beta-cells: electrophysiological characterization and role in insulin secretion. Diabetes 2008;57:1618–28.

    PubMed  CAS  Google Scholar 

  168. Barg S, Ma X, Eliasson L, Galvanovskis J, Göpel SO, Obermüller S, Platzer J, Renström E, Trus M, Atlas D, Striessnig J, Rorsman P. Fast exocytosis with few Ca2+ channels in insulin-secreting mouse pancreatic B cells. Biophys J 2001;81:3308–23.

    PubMed  CAS  Google Scholar 

  169. Horvath A, Szabadkai G, Varnai P, Aranyi T, Wollheim CB, Spat A, Enyedi P. Voltage dependent calcium channels in adrenal glomerulosa cells and in insulin producing cells. Cell Calcium 1998;23:33–42.

    PubMed  CAS  Google Scholar 

  170. Iwashima Y, Pugh W, Depaoli AM, Takeda J, Seino S, Bell GI, Polonsky KS. Expression of calcium channel mRNAs in rat pancreatic islets and downregulation after glucose infusion. Diabetes 1993;42:948–55.

    PubMed  CAS  Google Scholar 

  171. Namkung Y, Skrypnyk N, Jeong MJ, Lee T, Lee MS, Kim HL, Chin H, Suh PG, Kim SS, Shin HS. Requirement for the L-type Ca2+ channel alpha1D subunit in postnatal pancreatic beta cell generation. J Clin Invest 2001;108: 1015–22.

    PubMed  CAS  Google Scholar 

  172. Schulla V, Renström E, Feil R, Feil S, Franklin I, Gjinovci A, Jing XJ, Laux D, Lundquist I, Magnuson MA, Obermüller S, Olofsson CS, Salehi A, Wendt A, Klugbauer N, Wollheim CB, Rorsman P, Hofmann F. Impaired insulin secretion and glucose tolerance in beta cell-selective CaV1.2 Ca2+ channel null mice. EMBO J 2003;22:3844–54.

    PubMed  CAS  Google Scholar 

  173. Seino S, Chen L, Seino M, Blondel O, Takeda J, Johnson JH, Bell GI. Cloning of the alpha 1 subunit of a voltage-dependent calcium channel expressed in pancreatic beta cells. Proc Natl Acad Sci U S A 1992;89:584–8.

    PubMed  CAS  Google Scholar 

  174. Yang SN, Larsson O, Bränström R, Bertorello AM, Leibiger B, Leibiger IB, Moede T, Köhler M, Meister B, Berggren PO. Syntaxin 1 interacts with the LD subtype of voltage-gated Ca2+ channels in pancreatic beta cells. Proc Natl Acad Sci U S A 1999;96:10164–9.

    PubMed  CAS  Google Scholar 

  175. Rorsman P, Ashcroft FM, Trube G. Single Ca channel currents in mouse pancreatic B-cells. Pflugers Arch 1988;412:597–603.

    PubMed  CAS  Google Scholar 

  176. Ashcroft FM, Rorsman P, Trube G. Single calcium channel activity in mouse pancreatic beta-cells. Ann N Y Acad Sci 1989;560:410–2.

    PubMed  CAS  Google Scholar 

  177. Rorsman P, Trube G. Calcium and delayed potassium currents in mouse pancreatic beta-cells under voltage-clamp conditions. J Physiol 1986;374:531–50.

    PubMed  CAS  Google Scholar 

  178. Hiriart M, Matteson DR. Na channels and two types of Ca channels in rat pancreatic B cells identified with the reverse hemolytic plaque assay. J Gen Physiol 1988;91:617–39.

    PubMed  CAS  Google Scholar 

  179. Misler S, Barnett DW, Gillis KD, Pressel DM. Electrophysiology of stimulus-secretion coupling in human beta-cells. Diabetes 1992;41:1221–8.

    PubMed  CAS  Google Scholar 

  180. Satin LS, Cook DL. Calcium current inactivation in insulin-secreting cells is mediated by calcium influx and membrane depolarization. Pflügers Arch 1989;414:1–10.

    PubMed  CAS  Google Scholar 

  181. Arkhammar P, Juntti-Berggren L, Larsson O, Welsh M, Nanberg E, Sjoholm A, Köhler M, Berggren PO. Protein kinase C modulates the insulin secretory process by maintaining a proper function of the beta-cell voltage-activated Ca2+ channels. J Biol Chem 1994;269:2743–49.

    PubMed  CAS  Google Scholar 

  182. Ämmälä C, Eliasson L, Bokvist K, Berggren PO, Honkanen RE, Sjoholm A, Rorsman P. Activation of protein kinases and inhibition of protein phosphatases play a central role in the regulation of exocytosis in mouse pancreatic beta cells. Proc Natl Acad Sci U S A 1994;91:4343–7.

    PubMed  Google Scholar 

  183. Hsu WH, Xiang HD, Rajan AS, Boyd AE, 3rd. Activation of alpha 2-adrenergic receptors decreases Ca2+ influx to inhibit insulin secretion in a hamster beta-cell line: an action mediated by a guanosine triphosphate-binding protein. Endocrinology 1991;128:958–64.

    PubMed  CAS  Google Scholar 

  184. Hsu WH, Xiang HD, Rajan AS, Kunze DL, Boyd AE, 3rd. Somatostatin inhibits insulin secretion by a G-protein-mediated decrease in Ca2+ entry through voltage-dependent Ca2+ channels in the beta cell. J Biol Chem 1991;266:837–43.

    PubMed  CAS  Google Scholar 

  185. Nilsson T, Arkhammar P, Rorsman P, Berggren PO. Suppression of insulin release by galanin and somatostatin is mediated by a G-protein. An effect involving repolarization and reduction in cytoplasmic free Ca2+ concentration. J Biol Chem 1989;264:973–80.

    PubMed  CAS  Google Scholar 

  186. Aicardi G, Pollo A, Sher E, Carbone E. Noradrenergic inhibition and voltage-dependent facilitation of omega-conotoxin-sensitive Ca channels in insulin-secreting RINm5F cells. FEBS Lett 1991;281:201–4.

    PubMed  CAS  Google Scholar 

  187. Homaidan FR, Sharp GW, Nowak LM. Galanin inhibits a dihydropyridine-sensitive Ca2+ current in the RINm5f cell line. Proc Natl Acad Sci U S A 1991;88:8744–8.

    PubMed  CAS  Google Scholar 

  188. Ullrich S, Wollheim CB. Galanin inhibits insulin secretion by direct interference with exocytosis. FEBS Lett 1989;247:401–4.

    PubMed  CAS  Google Scholar 

  189. Rorsman P, Bokvist K, Ammala C, Arkhammar P, Berggren PO, Larsson O, Wahlander K. Activation by adrenaline of a low-conductance G protein-dependent K+ channel in mouse pancreatic B cells. Nature 1991;349: 77–9.

    PubMed  CAS  Google Scholar 

  190. Drews G, Debuyser A, Nenquin M, Henquin JC. Galanin and epinephrine act on distinct receptors to inhibit insulin release by the same mechanisms including an increase in K+ permeability of the B-cell membrane. Endocrinology 1990;126:1646–53.

    PubMed  CAS  Google Scholar 

  191. Debuyser A, Drews G, Henquin JC. Adrenaline inhibition of insulin release: role of the repolarization of the B cell membrane. Pflügers Arch 1991;419:131–7.

    PubMed  CAS  Google Scholar 

  192. Bokvist K, Ämmälä C, Berggren PO, Rorsman P, Wahlander K. Alpha 2-adrenoreceptor stimulation does not inhibit L-type calcium channels in mouse pancreatic beta-cells. Biosci Rep 1991;11:147–57.

    PubMed  CAS  Google Scholar 

  193. Ahren B, Arkhammar P, Berggren PO, Nilsson T. Galanin inhibits glucose-stimulated insulin release by a mechanism involving hyperpolarization and lowering of cytoplasmic free Ca2+ concentration. Biochem Biophys Res Commun 1986;140:1059–63.

    PubMed  CAS  Google Scholar 

  194. Bokvist K, Eliasson L, Ammala C, Renstrom E, Rorsman P. Co-localization of L-type Ca2+ channels and insulin-containing secretory granules and its significance for the initiation of exocytosis in mouse pancreatic B-cells. EMBO J 1995;14:50–57.

    PubMed  CAS  Google Scholar 

  195. Rutter GA, Tsuboi T, Ravier MA. Ca2+ microdomains and the control of insulin secretion. Cell Calcium 2006;40:539–51.

    PubMed  CAS  Google Scholar 

  196. Wiser O, Trus M, Hernandez A, Renström E, Barg S, Rorsman P, Atlas D. The voltage sensitive Lc-type Ca2+ channel is functionally coupled to the exocytotic machinery. Proc Natl Acad Sci U S A 1999;96:248–53.

    PubMed  CAS  Google Scholar 

  197. Ji J, Yang SN, Huang X, Li X, Sheu L, Diamant N, Berggren PO, Gaisano HY. Modulation of L-type Ca2+ channels by distinct domains within SNAP-25. Diabetes 2002;51:1425–36.

    PubMed  CAS  Google Scholar 

  198. Nitert MD, Nagorny CL, Wendt A, Eliasson L, Mulder H. CaV1.2 rather than CaV1.3 is coupled to glucose-stimulated insulin secretion in INS-1 832/13 cells. J Mol Endocrinol 2008;41:1–11.

    PubMed  CAS  Google Scholar 

  199. Plant TD. Na+ currents in cultured mouse pancreatic B-cells. Pflügers Arch 1988;411:429–35.

    PubMed  CAS  Google Scholar 

  200. Göpel SO, Kanno T, Barg S, Eliasson L, Galvanovskis J, Renström E, Rorsman P. Activation of Ca2+-dependent K+ channels contributes to rhythmic firing of action potentials in mouse pancreatic beta cells. J Gen Physiol 1999;114:759–70.

    PubMed  CAS  Google Scholar 

  201. Barnett DW, Pressel DM, Misler S. Voltage-dependent Na+ and Ca2+ currents in human pancreatic islet beta-cells: evidence for roles in the generation of action potentials and insulin secretion. Pflugers Arch 1995;431:272–82.

    PubMed  CAS  Google Scholar 

  202. Gilon P, Arredouani A, Gailly P, Gromada J, Henquin JC. Uptake and release of Ca2+ by the endoplasmic reticulum contribute to the oscillations of the cytosolic Ca2+ concentration triggered by Ca2+ influx in the electrically excitable pancreatic B-cell. J Biol Chem 1999;274:20197–205.

    PubMed  CAS  Google Scholar 

  203. Platzer J, Engel J, Schrott-Fischer A, Stephan K, Bova S, Chen H, Zheng H, Striessnig J. Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 2000;102:89–97.

    PubMed  CAS  Google Scholar 

  204. Pereverzev A, Mikhna M, Vajna R, Gissel C, Henry M, Weiergraber M, Hescheler J, Smyth N, Schneider T. Disturbances in glucose-tolerance, insulin-release, and stress-induced hyperglycemia upon disruption of the CaV2.3 (alpha 1E) subunit of voltage-gated Ca2+ channels. Mol Endocrinol 2002;16:884–95.

    PubMed  CAS  Google Scholar 

  205. Matsuda Y, Saegusa H, Zong S, Noda T, Tanabe T. Mice lacking CaV2.3 (alpha1E) calcium channel exhibit hyperglycemia. Biochem Biophys Res Commun 2001;289:791–95.

    PubMed  CAS  Google Scholar 

  206. Jing X, Li DQ, Olofsson CS, Salehi A, Surve VV, Caballero J, Ivarsson R, Lundquist I, Pereverzev A, Schneider T, Rorsman P, Renström E. CaV2.3 calcium channels control second-phase insulin release. J Clin Invest 2005;115:146–54.

    PubMed  CAS  Google Scholar 

  207. Philipson LH, Hice RE, Schaefer K, LaMendola J, Bell GI, Nelson DJ, Steiner DF. Sequence and functional expression in Xenopus oocytes of a human insulinoma and islet potassium channel. Proc Natl Acad Sci U S A 1991;88:53–57.

    PubMed  CAS  Google Scholar 

  208. Yan L, Figueroa DJ, Austin CP, Liu Y, Bugianesi RM, Slaughter RS, Kaczorowski GJ, Kohler MG. Expression of voltage-gated potassium channels in human and rhesus pancreatic islets. Diabetes 2004;53:597–607.

    PubMed  CAS  Google Scholar 

  209. Roe MW, Worley JF, 3rd, Mittal AA, Kuznetsov A, DasGupta S, Mertz RJ, Witherspoon SM, 3rd, Blair N, Lancaster ME, McIntyre MS, Shehee WR, Dukes ID, Philipson LH. Expression and function of pancreatic beta-cell delayed rectifier K+ channels. Role in stimulus-secretion coupling. J Biol Chem 1996;271:32241–6.

    PubMed  CAS  Google Scholar 

  210. Göpel SO, Kanno T, Barg S, Rorsman P. Patch-clamp characterisation of somatostatin-secreting -cells in intact mouse pancreatic islets. J Physiol 2000;528:497–507.

    PubMed  Google Scholar 

  211. MacDonald PE, Wheeler MB. Voltage-dependent K+ channels in pancreatic beta cells: role, regulation and potential as therapeutic targets. Diabetologia 2003;46:1046–62.

    PubMed  CAS  Google Scholar 

  212. Jacobson DA, Philipson LH. Action potentials and insulin secretion: new insights into the role of KV channels. Diabetes Obes Metab 9 Suppl 2007;2:89–98.

    Google Scholar 

  213. Kerschensteiner D, Stocker M. Heteromeric assembly of KV2.1 with KV9.3: effect on the state dependence of inactivation. Biophys J 1999;77:248–57.

    PubMed  CAS  Google Scholar 

  214. Sano Y, Mochizuki S, Miyake A, Kitada C, Inamura K, Yokoi H, Nozawa K, Matsushime H, Furuichi K. Molecular cloning and characterization of KV6.3, a novel modulatory subunit for voltage-gated K+ channel KV2.1. FEBS Lett 2002;512:230–34.

    PubMed  CAS  Google Scholar 

  215. Düfer M, Neye Y, Krippeit-Drews P, Drews G. Direct interference of HIV protease inhibitors with pancreatic beta-cell function. Naunyn Schmiedebergs Arch Pharmacol 2004;369:583–90.

    PubMed  CAS  Google Scholar 

  216. MacDonald PE, Ha XF, Wang J, Smukler SR, Sun AM, Gaisano HY, Salapatek AM, Backx PH, Wheeler MB. Members of the KV1 and KV2 voltage-dependent K+ channel families regulate insulin secretion. Mol Endocrinol 2001;15:1423–35.

    PubMed  CAS  Google Scholar 

  217. Smith PA, Bokvist K, Rorsman P. Demonstration of A-currents in pancreatic islet cells. Pflügers Arch 1989;413:441–43.

    PubMed  CAS  Google Scholar 

  218. MacDonald PE, Sewing S, Wang J, Joseph JW, Smukler SR, Sakellaropoulos G, Saleh MC, Chan CB, Tsushima RG, Salapatek AM, Wheeler MB. Inhibition of KV2.1 voltage-dependent K+ channels in pancreatic beta-cells enhances glucose-dependent insulin secretion. J Biol Chem 2002;277:44938–45.

    PubMed  CAS  Google Scholar 

  219. Su J, Yu H, Lenka N, Hescheler J, Ullrich S. The expression and regulation of depolarization-activated K+ channels in the insulin-secreting cell line INS-1. Pflugers Arch 2001;442:49–56.

    PubMed  CAS  Google Scholar 

  220. Smith PA, Bokvist K, Arkhammar P, Berggren PO, Rorsman P. Delayed rectifying and calcium-activated K+ channels and their significance for action potential repolarization in mouse pancreatic beta-cells. J Gen Physiol 1990;95:1041–59.

    PubMed  CAS  Google Scholar 

  221. Herrington J, Sanchez M, Wunderler D, Yan L, Bugianesi RM, Dick IE, Clark SA, Brochu RM, Priest BT, Kohler MG, McManus OB. Biophysical and pharmacological properties of the voltage-gated potassium current of human pancreatic beta-cells. J Physiol 2005;567:159–75.

    PubMed  CAS  Google Scholar 

  222. Henquin JC. Role of voltage- and Ca2+-dependent K+ channels in the control of glucose-induced electrical activity in pancreatic B-cells. Pflügers Arch 1990;416:568–72.

    PubMed  CAS  Google Scholar 

  223. Xia F, Gao X, Kwan E, Lam PP, Chan L, Sy K, Sheu L, Wheeler MB, Gaisano HY, Tsushima RG. Disruption of pancreatic beta-cell lipid rafts modifies KV2.1 channel gating and insulin exocytosis. J Biol Chem 2004;279: 24685–91.

    PubMed  CAS  Google Scholar 

  224. Herrington J. Gating modifier peptides as probes of pancreatic beta-cell physiology. Toxicon 2007;49:231–38.

    PubMed  CAS  Google Scholar 

  225. Kim SJ, Choi WS, Han JS, Warnock G, Fedida D, McIntosh CH. A novel mechanism for the suppression of a voltage-gated potassium channel by glucose-dependent insulinotropic polypeptide: protein kinase A-dependent endocytosis. J Biol Chem 2005;280:28692–700.

    PubMed  CAS  Google Scholar 

  226. MacDonald PE, Salapatek AM, Wheeler MB. Glucagon-like peptide-1 receptor activation antagonizes voltage-dependent repolarizing K+ currents in beta-cells: a possible glucose-dependent insulinotropic mechanism. Diabetes 51 Suppl 2002;3:S443–7.

    Google Scholar 

  227. Jacobson DA, Weber CR, Bao S, Turk J, Philipson LH. Modulation of the pancreatic islet beta-cell-delayed rectifier potassium channel KV2.1 by the polyunsaturated fatty acid arachidonate. J Biol Chem 2007;282:7442–9.

    PubMed  CAS  Google Scholar 

  228. Bao S, Jacobson DA, Wohltmann M, Bohrer A, Jin W, Philipson LH, Turk J. Glucose homeostasis, insulin secretion, and islet phospholipids in mice that overexpress iPLA2beta in pancreatic beta-cells and in iPLA2beta-null mice. Am J Physiol Endocrinol Metab 2008;294: E217–29.

    PubMed  CAS  Google Scholar 

  229. Ribalet B, Eddlestone GT, Ciani S. Metabolic regulation of the KATP and a maxi-KV channel in the insulin-secreting RINm5F cell. J Gen Physiol 1988;92:219–37.

    PubMed  CAS  Google Scholar 

  230. Satin LS, Hopkins WF, Fatherazi S, Cook DL. Expression of a rapid, low-voltage threshold K current in insulin-secreting cells is dependent on intracellular calcium buffering. J Membr Biol 1989;112:213–22.

    PubMed  CAS  Google Scholar 

  231. Kukuljan M, Goncalves AA, Atwater I. Charybdotoxin-sensitive KCa channel is not involved in glucose-induced electrical activity in pancreatic beta-cells. J Membr Biol 1991;119:187–95.

    PubMed  CAS  Google Scholar 

  232. Ishii TM, Silvia C, Hirschberg B, Bond CT, Adelman JP, Maylie J. A human intermediate conductance calcium-activated potassium channel. Proc Natl Acad Sci U S A 1997;94:11651–56.

    PubMed  CAS  Google Scholar 

  233. Düfer M, Gier B, Wolpers D, Ruth P, Krippeit Drews P, Drews G. SK4 channels are involved in the regulation of glucose homeostasis and pancreatic beta-cell function. Diabetes, 2009;58:1835–43.

    PubMed  Google Scholar 

  234. Tamarina NA, Wang Y, Mariotto L, Kuznetsov A, Bond C, Adelman J, Philipson LH. Small-conductance calcium-activated K+ channels are expressed in pancreatic islets and regulate glucose responses. Diabetes 2003;52: 2000–6.

    PubMed  CAS  Google Scholar 

  235. Vogalis F, Zhang Y, Goyal RK. An intermediate conductance K+ channel in the cell membrane of mouse intestinal smooth muscle. Biochim Biophys Acta 1998;1371: 309–16.

    PubMed  CAS  Google Scholar 

  236. Jensen BS, Strobaek D, Christophersen P, Jorgensen TD, Hansen C, Silahtaroglu A, Olesen SP, Ahring PK. Characterization of the cloned human intermediate- conductance Ca2+-activated K+ channel. Am J Physiol 1998;275:C848–56.

    PubMed  CAS  Google Scholar 

  237. Ledoux J, Werner ME, Brayden JE, Nelson MT. Calcium-activated potassium channels and the regulation of vascular tone. Physiology 2006;21:69–78.

    CAS  Google Scholar 

  238. Kozak JA, Misler S, Logothetis DE. Characterization of a Ca2+-activated K+ current in insulin-secreting murine betaTC-3 cells. J Physiol 1998;509 (Pt 2):355–370.

    PubMed  CAS  Google Scholar 

  239. Zhang M, Houamed K, Kupershmidt S, Roden D, Satin LS. Pharmacological properties and functional role of Kslow current in mouse pancreatic beta-cells: SK channels contribute to Kslow tail current and modulate insulin secretion. J Gen Physiol 2005;126:353–63.

    PubMed  CAS  Google Scholar 

  240. Haspel D, Krippeit-Drews P, Aguilar-Bryan L, Bryan J, Drews G, Düfer M. Crosstalk between membrane potential and cytosolic Ca2+ concentration in beta cells from Sur1-/- mice. Diabetologia 2005;48:913–21.

    PubMed  CAS  Google Scholar 

  241. Goforth PB, Bertram R, Khan FA, Zhang M, Sherman A, Satin LS. Calcium-activated K+ channels of mouse beta-cells are controlled by both store and cytoplasmic Ca2+: experimental and theoretical studies. J Gen Physiol 2002;120:307–22.

    PubMed  CAS  Google Scholar 

  242. Kanno T, Rorsman P, Göpel SO. Glucose-dependent regulation of rhythmic action potential firing in pancreatic beta-cells by KATP-channel modulation. J Physiol 2002;545:501–7.

    PubMed  CAS  Google Scholar 

  243. Atwater I, Ribalet B, Rojas E. Mouse pancreatic beta-cells: tetraethylammonium blockage of the potassium permeability increase induced by depolarization. J Physiol 1979;288:561–7.

    PubMed  CAS  Google Scholar 

  244. Herrington J, Zhou YP, Bugianesi RM, Dulski PM, Feng Y, Warren VA, Smith MM, Kohler MG, Garsky VM, Sanchez M, Wagner M, Raphaelli K, Banerjee P, Ahaghotu C, Wunderler D, Priest BT, Mehl JT, Garcia ML, McManus OB, Kaczorowski GJ, Slaughter RS. Blockers of the delayed-rectifier potassium current in pancreatic beta-cells enhance glucose-dependent insulin secretion. Diabetes 2006;55:1034–42.

    PubMed  CAS  Google Scholar 

  245. Jacobson DA, Kuznetsov A, Lopez JP, Kash S, Ammala CE, Philipson LH. KV2.1 ablation alters glucose-induced islet electrical activity, enhancing insulin secretion. Cell Metab 2007;6:229–35.

    PubMed  CAS  Google Scholar 

  246. Ribalet B, Beigelman PM. Calcium action potentials and potassium permeability activation in pancreatic beta-cells. Am J Physiol 1980;239:C124–33.

    PubMed  CAS  Google Scholar 

  247. Ämmälä C, Larsson O, Berggren PO, Bokvist K, Juntti-Berggren L, Kindmark H, Rorsman P. Inositol trisphosphate-dependent periodic activation of a Ca2+-activated K+ conductance in glucose-stimulated pancreatic beta-cells. Nature 1991;353:849–52.

    PubMed  Google Scholar 

  248. Atwater I, Dawson CM, Scott A, Eddlestone G, Rojas E. The nature of the oscillatory behaviour in electrical activity from pancreatic beta-cell. Horm Metab Res Suppl Suppl 1980;10:100–7.

    CAS  Google Scholar 

  249. Rolland JF, Henquin JC, Gilon P. Feedback control of the ATP-sensitive K+ current by cytosolic Ca2+ contributes to oscillations of the membrane potential in pancreatic beta-cells. Diabetes 2002;51:376–84.

    PubMed  CAS  Google Scholar 

  250. Krippeit-Drews P, Düfer M, Drews G. Parallel oscillations of intracellular calcium activity and mitochondrial membrane potential in mouse pancreatic B-cells. Biochem Biophys Res Commun 2000;267:179–83.

    PubMed  CAS  Google Scholar 

  251. Rosario LM, Barbosa RM, Antunes CM, Silva AM, Abrunhosa AJ, Santos RM. Bursting electrical activity in pancreatic beta-cells: evidence that the channel underlying the burst is sensitive to Ca2+ influx through L-type Ca2+ channels. Pflugers Arch 1993;424:439–47.

    PubMed  CAS  Google Scholar 

  252. Pressel DM, Misler S. Role of voltage-dependent ionic currents in coupling glucose stimulation to insulin secretion in canine pancreatic islet B-cells. J Membr Biol 1991;124:239–53.

    PubMed  CAS  Google Scholar 

  253. Pressel DM, Misler S. Sodium channels contribute to action potential generation in canine and human pancreatic islet B cells. J Membr Biol 1990;116:273–80.

    PubMed  CAS  Google Scholar 

  254. Britsch S, Krippeit-Drews P, Gregor M, Lang F, Drews G. Effects of osmotic changes in extracellular solution on electrical activity of mouse pancreatic B-cells. Biochem Biophys Res Commun 1994;204:641–5.

    PubMed  CAS  Google Scholar 

  255. Kinard TA, Satin LS. An ATP-sensitive Cl- channel current that is activated by cell swelling, cAMP, and glyburide in insulin-secreting cells. Diabetes 1995;44: 1461–6.

    PubMed  CAS  Google Scholar 

  256. Best L, Miley HE, Yates AP. Activation of an anion conductance and beta-cell depolarization during hypotonically induced insulin release. Exp Physiol 1996;81: 927–33.

    PubMed  CAS  Google Scholar 

  257. Drews G, Zempel G, Krippeit-Drews P, Britsch S, Busch GL, Kaba NK, Lang F. Ion channels involved in insulin release are activated by osmotic swelling of pancreatic B-cells. Biochim Biophys Acta 1998;1370:8–16.

    PubMed  CAS  Google Scholar 

  258. Best L. Cell-attached recordings of the volume-sensitive anion channel in rat pancreatic beta-cells. Biochim Biophys Acta 1999;1419:248–56.

    PubMed  CAS  Google Scholar 

  259. Best L. Study of a glucose-activated anion-selective channel in rat pancreatic beta-cells. Pflügers Arch 2002;445:97–104.

    PubMed  CAS  Google Scholar 

  260. Best L, Benington S. Effects of sulphonylureas on the volume-sensitive anion channel in rat pancreatic beta-cells. Br J Pharmacol 1998;125:874–8.

    PubMed  CAS  Google Scholar 

  261. Best L, Brown PD, Sheader EA, Yates AP. Selective inhibition of glucose-stimulated beta-cell activity by an anion channel inhibitor. J Membr Biol 2000;177:169–75.

    PubMed  CAS  Google Scholar 

  262. Best L, Brown PD, Tomlinson S. Anion fluxes, volume regulation and electrical activity in the mammalian pancreatic beta-cell. Exp Physiol 1997;82:957–66.

    PubMed  CAS  Google Scholar 

  263. Best L, Davies S, Brown PD. Tolbutamide potentiates the volume-regulated anion channel current in rat pancreatic beta cells. Diabetologia 2004;47:1990–7.

    PubMed  CAS  Google Scholar 

  264. Best L, Miley HE, Brown PD, Cook LJ. Methylglyoxal causes swelling and activation of a volume-sensitive anion conductance in rat pancreatic beta-cells. J Membr Biol 1999;167:65–71.

    PubMed  CAS  Google Scholar 

  265. Best L, Sheader EA, Brown PD. A volume-activated anion conductance in insulin-secreting cells. Pflügers Arch 1996;431:363–70.

    PubMed  CAS  Google Scholar 

  266. Best L, Speake T, Brown P. Functional characterisation of the volume-sensitive anion channel in rat pancreatic beta-cells. Exp Physiol 2001;86:145–50.

    PubMed  CAS  Google Scholar 

  267. Best L, Yates AP, Decher N, Steinmeyer K, Nilius B. Inhibition of glucose-induced electrical activity in rat pancreatic beta-cells by DCPIB, a selective inhibitor of volume-sensitive anion currents. Eur J Pharmacol 2004;489:13–9.

    PubMed  CAS  Google Scholar 

  268. Miley HE, Brown PD, Best L. Regulation of a volume-sensitive anion channel in rat pancreatic beta-cells by intracellular adenine nucleotides. J Physiol 1999;515 (Pt 2):413–7.

    PubMed  CAS  Google Scholar 

  269. Jakab M, Grundbichler M, Benicky J, Ravasio A, Chwatal S, Schmidt S, Strbak V, Furst J, Paulmichl M, Ritter M. Glucose induces anion conductance and cytosol-to-membrane transposition of ICln in INS-1E rat insulinoma cells. Cell Physiol Biochem 2006;18:21–34.

    Google Scholar 

  270. Jacobson DA, Philipson LH. TRP channels of the pancreatic beta cell. Handb Exp Pharmacol:409–24.

    Google Scholar 

  271. Sakura H, Ashcroft FM. Identification of four trp1 gene variants murine pancreatic beta-cells. Diabetologia 1997;40:528–32.

    PubMed  CAS  Google Scholar 

  272. Roe MW, Worley JF, 3rd, Qian F, Tamarina N, Mittal AA, Dralyuk F, Blair NT, Mertz RJ, Philipson LH, Dukes ID. Characterization of a Ca2+ release-activated nonselective cation current regulating membrane potential and [Ca2+]i oscillations in transgenically derived beta-cells. J Biol Chem 1998;273:10402–10.

    PubMed  CAS  Google Scholar 

  273. Qian F, Huang P, Ma L, Kuznetsov A, Tamarina N, Philipson LH. TRP genes: candidates for nonselective cation channels and store-operated channels in insulin-secreting cells. Diabetes 2002;51 Suppl 1:S183–9.

    Google Scholar 

  274. Gustafsson AJ, Ingelman-Sundberg H, Dzabic M, Awasum J, Nguyen KH, Ostenson CG, Pierro C, Tedeschi P, Woolcott O, Chiounan S, Lund PE, Larsson O, Islam MS. Ryanodine receptor-operated activation of TRP-like channels can trigger critical Ca2+ signaling events in pancreatic beta-cells. FASEB J 2005;19:301–3.

    PubMed  CAS  Google Scholar 

  275. Dyachok O, Gylfe E. Store-operated influx of Ca2+ in pancreatic beta-cells exhibits graded dependence on the filling of the endoplasmic reticulum. J Cell Sci 2001;114: 2179–86.

    PubMed  CAS  Google Scholar 

  276. Worley JF, 3rd, McIntyre MS, Spencer B, Dukes ID. Depletion of intracellular Ca2+ stores activates a maitotoxin-sensitive nonselective cationic current in beta-cells. J Biol Chem 1994;269:32055–8.

    PubMed  CAS  Google Scholar 

  277. Cheng H, Beck A, Launay P, Gross SA, Stokes AJ, Kinet JP, Fleig A, Penner R. TRPM4 controls insulin secretion in pancreatic beta-cells. Cell Calcium 2007;41:51–61.

    PubMed  CAS  Google Scholar 

  278. Prawitt D, Monteilh-Zoller MK, Brixel L, Spangenberg C, Zabel B, Fleig A, Penner R. TRPM5 is a transient Ca2+-activated cation channel responding to rapid changes in [Ca2+]i. Proc Natl Acad Sci U S A 2003;100: 15166–71.

    PubMed  CAS  Google Scholar 

  279. Rolland JF, Henquin JC, Gilon P. G protein-independent activation of an inward Na+ current by muscarinic receptors in mouse pancreatic beta-cells. J Biol Chem 2002;277:38373–80.

    PubMed  CAS  Google Scholar 

  280. Leech CA, Habener JF. Insulinotropic glucagon-like peptide-1-mediated activation of non-selective cation currents in insulinoma cells is mimicked by maitotoxin. J Biol Chem 1997;272:17987–93.

    PubMed  CAS  Google Scholar 

  281. Miura Y, Matsui H. Glucagon-like peptide-1 induces a cAMP-dependent increase of [Na+]i associated with insulin secretion in pancreatic beta-cells. Am J Physiol Endocrinol Metab 2003;285:E1001–9.

    PubMed  CAS  Google Scholar 

  282. Britsch S, Krippeit-Drews P, Lang F, Gregor M, Drews G. Glucagon-like peptide-1 modulates Ca2+ current but not K+ ATP current in intact mouse pancreatic B-cells. Biochem Biophys Res Commun 1995;207: 33–39.

    PubMed  CAS  Google Scholar 

  283. Wagner TF, Loch S, Lambert S, Straub I, Mannebach S, Mathar I, Düfer M, Lis A, Flockerzi V, Philipp SE, Oberwinkler J. Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic beta cells. Nat Cell Biol 2008;10:1421–30.

    PubMed  CAS  Google Scholar 

  284. Togashi K, Hara Y, Tominaga T, Higashi T, Konishi Y, Mori Y, Tominaga M. TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion. EMBO J 2006;25:1804–15.

    PubMed  CAS  Google Scholar 

  285. Akiba Y, Kato S, Katsube K, Nakamura M, Takeuchi K, Ishii H, Hibi T. Transient receptor potential vanilloid subfamily 1 expressed in pancreatic islet beta cells modulates insulin secretion in rats. Biochem Biophys Res Commun 2004;321:219–25.

    PubMed  CAS  Google Scholar 

  286. Noma A, Yanagihara K, Irisawa H. Inward current of the rabbit sinoatrial node cell. Pflügers Arch 1977;372:43–51.

    PubMed  CAS  Google Scholar 

  287. Yanagihara K, Irisawa H. Inward current activated during hyperpolarization in the rabbit sinoatrial node cell. Pflügers Arch 1980;385:11–9.

    PubMed  CAS  Google Scholar 

  288. Ludwig A, Zong X, Jeglitsch M, Hofmann F, Biel M. A family of hyperpolarization-activated mammalian cation channels. Nature 1998;393:587–91.

    PubMed  CAS  Google Scholar 

  289. Santoro B, Liu DT, Yao H, Bartsch D, Kandel ER, Siegelbaum SA, Tibbs GR. Identification of a gene encoding a hyperpolarization-activated pacemaker channel of brain. Cell 1998;93:717–29.

    PubMed  CAS  Google Scholar 

  290. Seifert R, Scholten A, Gauss R, Mincheva A, Lichter P, Kaupp UB. Molecular characterization of a slowly gating human hyperpolarization-activated channel predominantly expressed in thalamus, heart, and testis. Proc Natl Acad Sci U S A 1999;96:9391–6.

    PubMed  CAS  Google Scholar 

  291. Robinson RB, Siegelbaum SA. Hyperpolarization-activated cation currents: from molecules to physiological function. Annu Rev Physiol 2003;65:453–80.

    PubMed  CAS  Google Scholar 

  292. Debuyser A, Drews G, Henquin JC. Adrenaline inhibition of insulin release: role of cyclic AMP. Mol Cell Endocrinol 1991;78:179–86.

    PubMed  CAS  Google Scholar 

  293. El-Kholy W, MacDonald PE, Fox JM, Bhattacharjee A, Xue T, Gao X, Zhang Y, Stieber J, Li RA, Tsushima RG, Wheeler MB. Hyperpolarization-activated cyclic nucleotide-gated channels in pancreatic beta-cells. Mol Endocrinol 2007;21:753–64.

    PubMed  CAS  Google Scholar 

  294. Johnson JH, Newgard CB, Milburn JL, Lodish HF, Thorens B. The high Km glucose transporter of islets of Langerhans is functionally similar to the low affinity transporter of liver and has an identical primary sequence. J Biol Chem 1990;265:6548–51.

    PubMed  CAS  Google Scholar 

  295. Henquin JC. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 2000;49:1751–60.

    PubMed  CAS  Google Scholar 

  296. Aizawa T, Sato Y, Komatsu M. Importance of nonionic signals for glucose-induced biphasic insulin secretion. Diabetes 51 Suppl 2002;1:S96–98.

    Google Scholar 

  297. Ashcroft FM, Rorsman P. ATP-sensitive K+ channels: a link between B-cell metabolism and insulin secretion. Biochem Soc Trans 1990;18:109–11.

    PubMed  CAS  Google Scholar 

  298. Kennedy ED, Wollheim CB. Role of mitochondrial calcium in metabolism-secretion coupling in nutrient-stimulated insulin release. Diabetes Metab 1998;24: 15–24.

    PubMed  CAS  Google Scholar 

  299. Kennedy RT, Kauri LM, Dahlgren GM, Jung SK. Metabolic oscillations in beta-cells. Diabetes 2002;51 Suppl 1:S152–61.

    Google Scholar 

  300. Detimary P, Gilon P, Henquin JC. Interplay between cytoplasmic Ca2+ and the ATP/ADP ratio: a feedback control mechanism in mouse pancreatic islets. Biochem J 1998;333 (Pt 2):269–74.

    PubMed  CAS  Google Scholar 

  301. Larsson O, Kindmark H, Brandstrom R, Fredholm B, Berggren PO. Oscillations in KATP channel activity promote oscillations in cytoplasmic free Ca2+ concentration in the pancreatic beta cell. Proc Natl Acad Sci U S A 1996;93:5161–65.

    PubMed  CAS  Google Scholar 

  302. Kindmark H, Kohler M, Brown G, Branstrom R, Larsson O, Berggren PO. Glucose-induced oscillations in cytoplasmic free Ca2+ concentration precede oscillations in mitochondrial membrane potential in the pancreatic beta-cell. J Biol Chem 2001;276:34530–36.

    PubMed  CAS  Google Scholar 

  303. Luciani DS, Misler S, Polonsky KS. Ca2+ controls slow NAD(P)H oscillations in glucose-stimulated mouse pancreatic islets. J Physiol 2006;572:379–92.

    PubMed  CAS  Google Scholar 

  304. Chay TR, Keizer J. Minimal model for membrane oscillations in the pancreatic beta-cell. Biophys J 1983;42: 181–90.

    PubMed  CAS  Google Scholar 

  305. Magnus G, Keizer J. Model of beta-cell mitochondrial calcium handling and electrical activity. I. Cytoplasmic variables. Am J Physiol 1998;274:C1158–73.

    PubMed  CAS  Google Scholar 

  306. Bertram R, Sherman A. A calcium-based phantom bursting model for pancreatic islets. Bull Math Biol 2004;66:1313–44.

    PubMed  CAS  Google Scholar 

  307. Sato Y, Anello M, Henquin JC. Glucose regulation of insulin secretion independent of the opening or closure of adenosine triphosphate-sensitive K+ channels in beta cells. Endocrinology 1999;140: 2252–57.

    PubMed  CAS  Google Scholar 

  308. Komatsu M, Sato Y, Aizawa T, Hashizume K. KATP channel-independent glucose action: an elusive pathway in stimulus-secretion coupling of pancreatic beta-cell. Endocr J 2001;48:275–88.

    PubMed  CAS  Google Scholar 

  309. Ravier MA, Nenquin M, Miki T, Seino S, Henquin JC. Glucose controls cytosolic Ca2+ and insulin secretion in mouse islets lacking adenosine triphosphate-sensitive K+ channels owing to a knockout of the pore-forming subunit Kir6.2. Endocrinology 2009;150:33–45.

    PubMed  CAS  Google Scholar 

  310. Düfer M, Haspel D, Krippeit-Drews P, Aguilar-Bryan L, Bryan J, Drews G. Activation of the Na+/K+-ATPase by insulin and glucose as a putative negative feedback mechanism in pancreatic beta-cells. Pflügers Arch 2009;457:1351–60.

    PubMed  Google Scholar 

  311. Holz GGt, Kuhtreiber WM, Habener JF. Pancreatic beta-cells are rendered glucose-competent by the insulinotropic hormone glucagon-like peptide-1(7-37). Nature 1993;361:362–5.

    PubMed  CAS  Google Scholar 

  312. Gromada J, Bokvist K, Ding WG, Holst JJ, Nielsen JH, Rorsman P. Glucagon-like peptide 1 (7-36) amide stimulates exocytosis in human pancreatic beta-cells by both proximal and distal regulatory steps in stimulus-secretion coupling. Diabetes 1998;47:57–65.

    PubMed  CAS  Google Scholar 

  313. Light PE, Manning Fox JE, Riedel MJ, Wheeler MB. Glucagon-like peptide-1 inhibits pancreatic ATP-sensitive potassium channels via a protein kinase A- and ADP-dependent mechanism. Mol Endocrinol 2002;16:2135–44.

    PubMed  CAS  Google Scholar 

  314. Leech CA, Habener JF. A role for Ca2+-sensitive nonselective cation channels in regulating the membrane potential of pancreatic beta-cells. Diabetes 1998;47: 1066–73.

    PubMed  CAS  Google Scholar 

  315. Kato M, Ma HT, Tatemoto K. GLP-1 depolarizes the rat pancreatic beta cell in a Na+-dependent manner. Regul Pept 1996;62:23–7.

    PubMed  CAS  Google Scholar 

  316. Suga S, Kanno T, Nakano K, Takeo T, Dobashi Y, Wakui M. GLP-I(7-36) amide augments Ba2+ current through L-type Ca2+ channel of rat pancreatic beta-cell in a cAMP-dependent manner. Diabetes 1997;46:1755–60.

    PubMed  CAS  Google Scholar 

  317. Gromada J, Dissing S, Bokvist K, Renstrom E, Frokjaer-Jensen J, Wulff BS, Rorsman P. Glucagon-like peptide I increases cytoplasmic calcium in insulin-secreting beta TC3-cells by enhancement of intracellular calcium mobilization. Diabetes 1995;44:767–74.

    PubMed  CAS  Google Scholar 

  318. Gilon P, Henquin JC. Mechanisms and physiological significance of the cholinergic control of pancreatic beta-cell function. Endocr Rev 2001;22:565–604.

    PubMed  CAS  Google Scholar 

  319. Ullrich S, Wollheim CB. GTP-dependent inhibition of insulin secretion by epinephrine in permeabilized RINm5F cells. Lack of correlation between insulin secretion and cyclic AMP levels. J Biol Chem 1988;263:8615–20.

    PubMed  CAS  Google Scholar 

  320. Dunne MJ, Bullett MJ, Li GD, Wollheim CB, Petersen OH. Galanin activates nucleotide-dependent K+ channels in insulin-secreting cells via a pertussis toxin-sensitive G-protein. EMBO J 1989;8:413–20.

    PubMed  CAS  Google Scholar 

  321. Zhao Y, Fang Q, Straub SG, Sharp GW. Both Gi and Go heterotrimeric G proteins are required to exert the full effect of norepinephrine on the beta-cell KATP channel. J Biol Chem 2008;283:5306–16.

    PubMed  CAS  Google Scholar 

  322. Sieg A, Su J, Munoz A, Buchenau M, Nakazaki M, Aguilar-Bryan L, Bryan J, Ullrich S. Epinephrine-induced hyperpolarization of islet cells without KATP channels. Am J Physiol Endocrinol Metab 2004;286:E463–71.

    PubMed  CAS  Google Scholar 

  323. Miura Y, Gilon P, Henquin JC. Muscarinic stimulation increases Na+ entry in pancreatic B-cells by a mechanism other than the emptying of intracellular Ca2+ pools. Biochem Biophys Res Commun 1996;224:67–73.

    PubMed  CAS  Google Scholar 

  324. Miura Y, Henquin JC, Gilon P. Emptying of intracellular Ca2+ stores stimulates Ca2+ entry in mouse pancreatic beta-cells by both direct and indirect mechanisms. J Physiol 1997;503 (Pt 2):387–98.

    PubMed  CAS  Google Scholar 

  325. Mears D, Zimliki CL. Muscarinic agonists activate Ca2+ store-operated and -independent ionic currents in insulin-secreting HIT-T15 cells and mouse pancreatic beta-cells. J Membr Biol 2004;197:59–70.

    PubMed  CAS  Google Scholar 

  326. Leibiger IB, Berggren PO. Insulin signaling in the pancreatic beta-cell. Annu Rev Nutr 2008;28:233–51.

    PubMed  CAS  Google Scholar 

  327. Khan FA, Goforth PB, Zhang M, Satin LS. Insulin activates ATP-sensitive K+ channels in pancreatic beta-cells through a phosphatidylinositol 3-kinase-dependent pathway. Diabetes 2001;50:2192–8.

    PubMed  CAS  Google Scholar 

  328. Persaud SJ, Asare-Anane H, Jones PM. Insulin receptor activation inhibits insulin secretion from human islets of Langerhans. FEBS Lett 2002;510:225–8.

    PubMed  CAS  Google Scholar 

  329. Gromada J, Bokvist K, Ding WG, Barg S, Buschard K, Renström E, Rorsman P. Adrenaline stimulates glucagon secretion in pancreatic A-cells by increasing the Ca2+ current and the number of granules close to the L-type Ca2+ channels. J Gen Physiol 1997;110:217–28.

    PubMed  CAS  Google Scholar 

  330. Barg S, Galvanovskis J, Göpel SO, Rorsman P, Eliasson L. Tight coupling between electrical activity and exocytosis in mouse glucagon-secreting alpha-cells. Diabetes 2000;49:1500–10.

    PubMed  CAS  Google Scholar 

  331. Göpel SO, Kanno T, Barg S, Weng XG, Gromada J, Rorsman P. Regulation of glucagon release in mouse -cells by KATP channels and inactivation of TTX-sensitive Na+ channels. J Physiol 2000;528:509–20.

    PubMed  CAS  Google Scholar 

  332. Rorsman P, Berggren PO, Bokvist K, Ericson H, Möhler H, Ostenson CG, Smith PA. Glucose-inhibition of glucagon secretion involves activation of GABAA-receptor chloride channels. Nature 1989;341:233–6.

    PubMed  CAS  Google Scholar 

  333. Zhang Y, Zhang N, Gyulkhandanyan AV, Xu E, Gaisano HY, Wheeler MB, Wang Q. Presence of functional hyperpolarisation-activated cyclic nucleotide-gated channels in clonal alpha cell lines and rat islet alpha cells. Diabetologia 2008;51:2290–8.

    PubMed  CAS  Google Scholar 

  334. Cabrera O, Jacques-Silva MC, Speier S, Yang SN, Köhler M, Fachado A, Vieira E, Zierath JR, Kibbey R, Berman DM, Kenyon NS, Ricordi C, Caicedo A, Berggren PO. Glutamate is a positive autocrine signal for glucagon release. Cell Metab 2008;7:545–54.

    PubMed  CAS  Google Scholar 

  335. Rajan AS, Aguilar-Bryan L, Nelson DA, Nichols CG, Wechsler SW, Lechago J, Bryan J. Sulfonylurea receptors and ATP-sensitive K+ channels in clonal pancreatic alpha cells. Evidence for two high affinity sulfonylurea receptors. J Biol Chem 1993;268:15221–8.

    PubMed  CAS  Google Scholar 

  336. Ronner P, Matschinsky FM, Hang TL, Epstein AJ, Buettger C. Sulfonylurea-binding sites and ATP-sensitive K+ channels in alpha-TC glucagonoma and beta-TC insulinoma cells. Diabetes 1993;42: 1760–72.

    PubMed  CAS  Google Scholar 

  337. Bokvist K, Olsen HL, Hoy M, Gotfredsen CF, Holmes WF, Buschard K, Rorsman P, Gromada J. Characterisation of sulphonylurea and ATP-regulated K+ channels in rat pancreatic A-cells. Pflugers Arch 1999;438: 428–36.

    PubMed  CAS  Google Scholar 

  338. Leung YM, Ahmed I, Sheu L, Tsushima RG, Diamant NE, Hara M, Gaisano HY. Electrophysiological characterization of pancreatic islet cells in the mouse insulin promoter-green fluorescent protein mouse. Endocrinology 2005;146:4766–75.

    PubMed  CAS  Google Scholar 

  339. Gromada J, Franklin I, Wollheim CB. Alpha-cells of the endocrine pancreas: 35 years of research but the enigma remains. Endocr Rev 2007;28:84–116.

    PubMed  CAS  Google Scholar 

  340. Ravier MA, Rutter GA. Glucose or insulin, but not zinc ions, inhibit glucagon secretion from mouse pancreatic alpha-cells. Diabetes 2005;54:1789–97.

    PubMed  CAS  Google Scholar 

  341. Leung YM, Ahmed I, Sheu L, Gao X, Hara M, Tsushima RG, Diamant NE, Gaisano HY. Insulin regulates islet alpha-cell function by reducing KATP channel sensitivity to adenosine 5'-triphosphate inhibition. Endocrinology 2006;147:2155–62.

    PubMed  CAS  Google Scholar 

  342. Zhou H, Zhang T, Harmon JS, Bryan J, Robertson RP. Zinc, not insulin, regulates the rat alpha-cell response to hypoglycemia in vivo. Diabetes 2007;56:1107–12.

    PubMed  CAS  Google Scholar 

  343. Göpel SO, Kanno T, Barg S, Rorsman P. Patch-clamp characterisation of somatostatin-secreting δ-cells in intact mouse pancreatic islets. J Physiol 2000;528:497–507.

    PubMed  CAS  Google Scholar 

  344. Yoshimoto Y, Fukuyama Y, Horio Y, Inanobe A, Gotoh M, Kurachi Y. Somatostatin induces hyperpolarization in pancreatic islet alpha cells by activating a G protein-gated K+ channel. FEBS Lett 1999;444:265–69.

    PubMed  CAS  Google Scholar 

  345. Rorsman P, Hellman B. Voltage-activated currents in guinea pig pancreatic alpha 2 cells. Evidence for Ca2+-dependent action potentials. J Gen Physiol 1988;91: 223–42.

    PubMed  CAS  Google Scholar 

  346. Vignali S, Leiss V, Karl R, Hofmann F, Welling A. Characterization of voltage-dependent sodium and calcium channels in mouse pancreatic A- and B-cells. J Physiol 2006;572:691–706.

    PubMed  CAS  Google Scholar 

  347. Olsen HL, Theander S, Bokvist K, Buschard K, Wollheim CB, Gromada J. Glucose stimulates glucagon release in single rat alpha-cells by mechanisms that mirror the stimulus-secretion coupling in beta-cells. Endocrinology 2005;146:4861–70.

    PubMed  CAS  Google Scholar 

  348. Bailey SJ, Ravier MA, Rutter GA. Glucose-dependent regulation of gamma-aminobutyric acid (GABAA) receptor expression in mouse pancreatic islet alpha-cells. Diabetes 2007;56:320–27.

    PubMed  CAS  Google Scholar 

  349. Wendt A, Birnir B, Buschard K, Gromada J, Salehi A, Sewing S, Rorsman P, Braun M. Glucose inhibition of glucagon secretion from rat alpha-cells is mediated by GABA released from neighboring beta-cells. Diabetes 2004;53:1038–45.

    PubMed  CAS  Google Scholar 

  350. Xu E, Kumar M, Zhang Y, Ju W, Obata T, Zhang N, Liu S, Wendt A, Deng S, Ebina Y, Wheeler MB, Braun M, Wang Q. Intra-islet insulin suppresses glucagon release via GABA-GABAA receptor system. Cell Metab 2006;3:47–58.

    PubMed  CAS  Google Scholar 

  351. Gaskins HR, Baldeon ME, Selassie L, Beverly JL. Glucose modulates gamma-aminobutyric acid release from the pancreatic beta TC6 cell line. J Biol Chem 1995;270:30286–9.

    PubMed  CAS  Google Scholar 

  352. Wesslen N, Pipeleers D, Van de Winkel M, Rorsman P, Hellman B. Glucose stimulates the entry of Ca2+ into the insulin-producing beta cells but not into the glucagon-producing alpha 2 cells. Acta Physiol Scand 1987;131:230–4.

    PubMed  CAS  Google Scholar 

  353. Gromada J, Ma X, Hoy M, Bokvist K, Salehi A, Berggren PO, Rorsman P. ATP-sensitive K+ channel-dependent regulation of glucagon release and electrical activity by glucose in wild-type and SUR1-/- mouse alpha-cells. Diabetes 53 Suppl 2004;3:S181–9.

    Google Scholar 

  354. Hjortoe GM, Hagel GM, Terry BR, Thastrup O, Arkhammar PO. Functional identification and monitoring of individual alpha and beta cells in cultured mouse islets of Langerhans. Acta Diabetol 2004;41:185–93.

    PubMed  CAS  Google Scholar 

  355. Manning Fox JE, Gyulkhandanyan AV, Satin LS, Wheeler MB. Oscillatory membrane potential response to glucose in islet beta-cells: a comparison of islet-cell electrical activity in mouse and rat. Endocrinology 2006; 147:4655–63.

    PubMed  CAS  Google Scholar 

  356. Franklin I, Gromada J, Gjinovci A, Theander S, Wollheim CB. Beta-cell secretory products activate alpha-cell ATP-dependent potassium channels to inhibit glucagon release. Diabetes 2005;54:1808–15.

    PubMed  CAS  Google Scholar 

  357. Quoix N, Cheng-Xue R, Mattart L, Zeinoun Z, Guiot Y, Beauvois MC, Henquin JC, Gilon P. Glucose and pharmacological modulators of ATP-sensitive K+ channels control [Ca2+]c by different mechanisms in isolated mouse alpha-cells. Diabetes 2009;58:412–21.

    PubMed  CAS  Google Scholar 

  358. MacDonald PE, De Marinis YZ, Ramracheya R, Salehi A, Ma X, Johnson PR, Cox R, Eliasson L, Rorsman P. A KATP channel-dependent pathway within alpha cells regulates glucagon release from both rodent and human islets of Langerhans. PLoS Biol 2007;5:e143.

    PubMed  Google Scholar 

  359. Kanno T, Göpel SO, Rorsman P, Wakui M. Cellular function in multicellular system for hormone-secretion: electrophysiological aspect of studies on alpha-, beta- and delta-cells of the pancreatic islet. Neurosci Res 2002;42:79–90.

    PubMed  CAS  Google Scholar 

  360. Ullrich S, Prentki M, Wollheim CB. Somatostatin inhibition of Ca2+-induced insulin secretion in permeabilized HIT-T15 cells. Biochem J 1990;270:273–6.

    PubMed  CAS  Google Scholar 

  361. Wollheim CB, Winiger BP, Ullrich S, Wuarin F, Schlegel W. Somatostatin inhibition of hormone release: effects on cytosolic Ca++ and interference with distal secretory events. Metabolism 1990;39:101–4.

    PubMed  CAS  Google Scholar 

  362. Schuit FC, Derde MP, Pipeleers DG. Sensitivity of rat pancreatic A and B cells to somatostatin. Diabetologia 1989;32:207–12.

    PubMed  CAS  Google Scholar 

  363. Berts A, Ball A, Dryselius G, Gylfe E, Hellman B. Glucose stimulation of somatostatin-producing islet cells involves oscillatory Ca2+ signaling. Endocrinology 1996;137:693–7.

    PubMed  CAS  Google Scholar 

  364. Suzuki M, Fujikura K, Inagaki N, Seino S, Takata K. Localization of the ATP-sensitive K+ channel subunit Kir6.2 in mouse pancreas. Diabetes 1997;46:1440–4.

    PubMed  CAS  Google Scholar 

  365. Suzuki M, Fujikura K, Kotake K, Inagaki N, Seino S, Takata K. Immuno-localization of sulphonylurea receptor 1 in rat pancreas. Diabetologia 1999;42:1204–11.

    PubMed  CAS  Google Scholar 

  366. Bränström R, Hoog A, Wahl MA, Berggren PO, Larsson O. RIN14B: a pancreatic delta-cell line that maintains functional ATP-dependent K+ channels and capability to secrete insulin under conditions where it no longer secretes somatostatin. FEBS Lett 1997;411:301–7.

    PubMed  Google Scholar 

  367. Efendic S, Enzmann F, Nylen A, Uvnas-Wallensten K, Luft R. Effect of glucose/sulfonylurea interaction on release of insulin, glucagon, and somatostatin from isolated perfused rat pancreas. Proc Natl Acad Sci U S A 1979;76:5901–4.

    PubMed  CAS  Google Scholar 

  368. Nadal A, Quesada I, Soria B. Homologous and heterologous asynchronicity between identified alpha-, beta- and delta-cells within intact islets of Langerhans in the mouse. J Physiol 1999;517 (Pt 1):85–93.

    PubMed  CAS  Google Scholar 

  369. Quesada I, Nadal A, Soria B. Different effects of tolbutamide and diazoxide in alpha, beta-, and delta-cells within intact islets of Langerhans. Diabetes 1999;48:2390–7.

    PubMed  CAS  Google Scholar 

  370. Zhang Q, Bengtsson M, Partridge C, Salehi A, Braun M, Cox R, Eliasson L, Johnson PR, Renstrom E, Schneider T, Berggren PO, Göpel S, Ashcroft FM, Rorsman P. R-type Ca2+-channel-evoked CICR regulates glucose-induced somatostatin secretion. Nat Cell Biol 2007;9:453–60.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gisela Drews .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Drews, G., Krippeit-Drews, P., Düfer, M. (2010). Electrophysiology of Islet Cells. In: Islam, M. (eds) The Islets of Langerhans. Advances in Experimental Medicine and Biology, vol 654. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3271-3_7

Download citation

Publish with us

Policies and ethics