Skip to main content

Deamination of methylamine and angiopathy; toxicity of formaldehyde, oxidative stress and relevance to protein glycoxidation in diabetes

  • Conference paper
MAO — The Mother of all Amine Oxidases

Part of the book series: Journal of Neural Transmission. Supplement ((NEURAL SUPPL,volume 52))

Summary

Semicarbazide-sensitive amine oxidase (SSAO) is located in the vascular smooth muscles, retina, kidney and the cartilage tissues, and it circulates in the blood. The enzyme activity has been found to be significantly increased in blood and tissues in diabetic patients and animals. Methylamine and aminoacetone are endogenous substrates for SSAO. The deaminated products are formaldehyde and methylglyoxal respectively, as well as H2O2 and ammonia, which are all potentially cytotoxic. Formaldehyde and methylglyoxal are cytotoxic towards endothelial cells. Excessive SSAOmediated deamination may directly initiate endothelial injury and plaque formation, increase oxidative stress, which can potentiate oxidative glycation, and/or LDL oxidation and damage vascular systems. Formaldehyde is also capable of exacerbating advanced glycation, and thus increase the complexity of protein cross-linking. Uncontrolled SSAO-mediated deamination may be involved in the acceleration of the clinical complications in diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asatoor AM, Kerr DNS (1961) Amines in blood and urine in relation to liver disease. Clin Chim Acta 6: 149–156

    Article  PubMed  CAS  Google Scholar 

  • Auerbach O, Hammond EC, Garfinkel L (1965) Smoking in relation to atherosclerosis of the coronary arteries. N Engl J Med 273: 775–779

    Article  PubMed  CAS  Google Scholar 

  • Baba S, Watanabe Y, Gejyo F, Arakwa M (1984) High-performance liquid chromatographic determination of serum aliphatic amines in chronic renal failure. Clin Chim Acta 136: 49–56

    Article  PubMed  CAS  Google Scholar 

  • Baynes JW (1991) Role of oxidated stress in development of complications in diabetes. Diabetes 40: 405–412

    Article  PubMed  CAS  Google Scholar 

  • Bierman EL (1992) Atherogenesis in diabetes. Arterioscler Thromb 12: 647–656

    Article  PubMed  CAS  Google Scholar 

  • Blau K (1961) Chromatographic methods for the study of amines from biological material. Biochem J 80: 193–200

    PubMed  CAS  Google Scholar 

  • Bolt HM (1987) Experimental toxicology of formaldehyde. J Can Res Clin 13: 305–309

    Article  Google Scholar 

  • Boomsma FHM, van den Meiracker AH, Veld AJM, Schalekamp MADH (1995) Plasma semicarbazide-sensitive amine oxidase activity is elevated in diabetes mellitus and correlates with glycosylated haemoglobin. Clin Sci 88: 675–679

    PubMed  CAS  Google Scholar 

  • Boor PJ, Nelson TJ (1980) Allylamine cardiotoxicity. III. Protection by semicarbazide and in vivo derangements of monoamine oxidase. Toxicol 18: 87–102

    Article  CAS  Google Scholar 

  • Boor PJ, Hysmith RM (1987) Allylamine cardiovascular toxicity. Toxicol 44: 129–144

    Article  CAS  Google Scholar 

  • Boor PJ, Sanduja R, Nelson TJ, Ansari GAS (1987) In vivo metabolism of the cardiovascular toxin, allylamine. Biochem Pharmacol 36: 4347–4353

    Article  PubMed  CAS  Google Scholar 

  • Boor PJ, Trent MB, Lyles GA, Tao M, Ansari GAS (1992) Methylamine metabolism to formaldehyde by vascular semicarbazide-sensitive amine oxidase. Toxicology 73: 251–258

    Article  PubMed  CAS  Google Scholar 

  • Brett J, Ogawa S, Kirstein M, Radoff S, Vlassara H, Stern D (1990) Advanced glycosylation end products selectively attract monocytes to migrate across endothelial cell monolayers and induce activation and growth factor elaboration. Circulation 82[Suppl 3]: 97

    Google Scholar 

  • Brownlee M (1990) Advanced products of nonenzymatic glycoxylation and the pathogenesis of diabetic complications. In: Rifkin H, O’Porte D Jr (eds) Diabetes mellitus theory and practice. Elsevier, New York, pp 277–291

    Google Scholar 

  • Brownlee M (1992) Non-enzymatic glycosylation of macromolecules: prospects of pharmacological modulation. Diabetes 41[Suppl 2]: 57–60

    PubMed  CAS  Google Scholar 

  • Brownlee M, Vlassara H, Cerami A (1985) Nonenzymatic glycosylation products on collagen covalently trap low density lipoprotein. Diabetes 34: 938–941

    Article  PubMed  CAS  Google Scholar 

  • Brownlee M, Cream A, Vlassara H (1988) Advanced glucosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med 318: 1315–1321

    Article  PubMed  CAS  Google Scholar 

  • Bucala R, Makita Z, Koschinsky T, Cerami A, Vlassara H (1993) Lipid advanced glycation: pathway for lipid oxidation in vivo. Proc Natl Acad Sci USA 90: 6434–6438

    Article  PubMed  CAS  Google Scholar 

  • Callingham BA, Crosbie AE, Rous BA (1995) Some aspects of the pathophysiology of semicarbazide-sensitive amine oxidase enzymes. In: Current neurochemical and pharmacological aspects of biogenic amines: their function, oxidative deamination and inhibition. Prog Brain Res 106: 305–321

    Article  PubMed  CAS  Google Scholar 

  • Cooper JR, Kini MM (1962) Editorial biochemical aspects of methanol poisoning. Biochem Pharmacol 11: 405–416

    Article  PubMed  CAS  Google Scholar 

  • Courteix C, Eschalier A, Lavarenne J (1993) Streptozotocin-induced diabetic rats: behavioral evidence for a model of chronic pain. Pain 53: 81–88

    Article  PubMed  CAS  Google Scholar 

  • Cryer PE, Haymond MW, Santiago JV, Shad SD (1976) Norepinephrine and epinephrine release and adrenergic mediation of smoking-associated haemodynamic and metabolic events. N Engl J Med 295: 573–577

    Article  PubMed  CAS  Google Scholar 

  • Dar MS, Morselli PL, Bowman ER (1985) The enzymatic systems involved in the mammalian metabolism of methylamine. Gen Pharmacol 16: 557–560

    Article  PubMed  CAS  Google Scholar 

  • D’Elia JA, Kaldany A, Miller DG, Abourizk NN, Weinrauch LA (1985) Diabetic nephropathy. In: Marble A, et al (eds) Joslin’s diabetes mellitus. Lea and Febiger, Philadelphia, pp 635–663

    Google Scholar 

  • Edelstein D, Brownlee M (1992) Mechanistic studies of advanced glycosylation end product inhibition by aminoguanidine. Diabetes 41: 26–29

    Article  PubMed  CAS  Google Scholar 

  • Egyud LG, Szent-Gyorgyi A (1968) Cancer static action of methylglyoxal. Science 160: 1140

    Article  PubMed  CAS  Google Scholar 

  • Elliott J, Callingham BA, Sharman DF (1989) The influence of amine metabolizing enzymes on the pharmacology of tyramine in the isolated perfused mesenteric arterial bed of rat. Br J Pharmacol 98: 515–522

    Article  PubMed  CAS  Google Scholar 

  • Elliott J, Fowden AL, Callingham BA, Sharman DF, Silver M (1991) Physiological and pathological influences on sheep blood plasma amine oxidase: effect of pregnancy and experimental alloxan-induced diabetes mellitus. Res Vet Sci 50: 334–339

    Article  PubMed  CAS  Google Scholar 

  • Epifano L, Di Vincenzo A, Fanelli C, Porcellati F, Perriello G, De Feo P, Motolese M, Brunetti P, Bolli CB (1992) Effect of cigarette smoking and of a transdermal nicotine delivery system on glucoregulation in type 2 diabetes mellitus. Eur J Clin Pharmacol 43: 257–263

    Article  PubMed  CAS  Google Scholar 

  • Frankenhaeuser M (1971) Behavior and circulating catecholamines. Brain Res 31: 241–262

    Article  PubMed  CAS  Google Scholar 

  • Fu MX, Knecht KJ, Thorpe SR, Baynes JW (1992) Role of oxygen in cross linking and chemical modification collagen by glucose. Diabetes 41[Suppl 2]: 42–48

    PubMed  CAS  Google Scholar 

  • Gerich JE (1988) Role of insulin resistance in the pathogenesis of Type 2 (non-insulin-dependent) diabetes mellitus. In: Nattrass M, Halle PJ (eds) Bailliere’s clinical endocrinology and metabolism 2: 307–326

    Google Scholar 

  • Gibson JE (ed) (1983) Formaldehyde toxicity. Hemisphere Publ, Washington

    Google Scholar 

  • Grafstrom RC, Curren RD, Yang LL, Harris CC (1985) Genotoxicity of formaldehyde in cultured human bronchial fibroblasts. Science 228: 89–91

    Article  PubMed  CAS  Google Scholar 

  • Halimi JM, Sealey JE (1992) Prorenin in diabetes mellitus. Trends Endocrinol Metab 3: 270–275

    Article  PubMed  CAS  Google Scholar 

  • Harker LA, Ross R, Slichter SJ, Scott CR (1976) Homocysteine induced arteriosclerosis. The role of endothelial injury and platelet response in its genesis. J Clin Invest 58: 731–741

    Article  PubMed  CAS  Google Scholar 

  • Hayes BE, Clarke DE (1990) Semicarbazide-sensitive amine oxidase activity in streptozotocin diabetic rats. Res Comm Chem Pathol Pharmacol 69: 71–83

    CAS  Google Scholar 

  • Helander A, Tottmar O (1987) Metabolism of biogenic aldehydes in isolated human blood cells, platelets and in plasma. Biochem Pharmacol 36: 1077–1082

    Article  PubMed  CAS  Google Scholar 

  • Hunt JV, Smith CCT, Wolff SP (1990) Autooxidative glycosylation and possible involvement of peroxides and free radicals in LDL modification by glucose. Diabetes 39: 1420–1424

    Article  PubMed  CAS  Google Scholar 

  • Hunt JV, Bottoms MA, Mitchinson MJ (1993) Oxidative alteration in the experimental glycation model of diabetes mellitus are due to protein-glucose adduct oxidation. Biochem J 291: 529–535

    PubMed  CAS  Google Scholar 

  • Jane SM, Mu D, Wemmer D, Smith JA, Kaur S, Maltby D, Burlingame AL, Klinman JP (1990) A new redox cofactor in eukaryotic enzymes: 6-hydroxydopa at the active site of bovine serum amine oxidase. Science 248: 981–987

    Article  Google Scholar 

  • Jennings PE, Jones AF, Florkouski CM, Lunic J, Barnett AH (1987) Increased diene conjugates in diabetic subjects with microangiopathy. Diabetic Med 4: 452–456

    Article  PubMed  CAS  Google Scholar 

  • Kapeller-Adler R, Toda K (1932) Über das Vorkommen von Monomethylamine im Harn. Biochem Z 248: 403–425

    CAS  Google Scholar 

  • Kalapos NP, Garzo T, Antoni F, Mardi S (1992) Accumulation of S-D-lactolylglutathione and transient decrease of glutathione level caused by methylglyoxal load in isolated hepatocytes. Biochim Biophys Acta 1135: 159–164

    Article  PubMed  CAS  Google Scholar 

  • Lewinsohn R (1981) Amine oxidase in human blood vessels and non-vascular smooth muscle. J Pharm Pharmacol 33: 569–575

    Article  PubMed  CAS  Google Scholar 

  • Lin SJ, Hong CY, Chang MS, Chiang BN, Chien S (1992) Long-term nicotine exposure increases aortic endothelial cell death and enhances transendothelial macromolecular transport in rats. Arterioscler Thromb 12: 1305–1312

    Article  PubMed  CAS  Google Scholar 

  • Lo CS, Relf IRN, Myers KA, Wahlqvist ML (1986) Doppler ultrasound recognition of preclinical changes in arterial wall in diabetic subjects: compliance and pulse-wave damping. Diabetes Care 9: 27–31

    Article  PubMed  CAS  Google Scholar 

  • Luetscher JA, Kraemer FB, Wilson DM (1989) Prorenin and vascular complications of diabetes. Am J Hypertens 2: 382–386

    PubMed  CAS  Google Scholar 

  • Lyles GA (1995) Substrate-specificity of mammalian tissue-bound semicarbazide-sensitive amine oxidase. Prog Brain Res 106: 293–303

    Article  PubMed  CAS  Google Scholar 

  • Lyles GA, Singh I (1985) Vascular smooth muscle cells: a major source of the semicarbazide-sensitive amine oxidase of the rat aorta. J Pharm Pharmacol 37: 637–643

    Article  PubMed  CAS  Google Scholar 

  • Lyles GA, Bertie KH (1987) Properties of a semicarbazide-sensitive amine oxidase in rat articular cartilage. Pharmacol Toxicol [Suppl] 1: 33

    Google Scholar 

  • Lyles GA, McDougall SA (1989) The enhanced daily excretion of urinary methylamine in rats treated with semicarbazide or hydralazine may be related to the inhibition of semicarbazide-sensitive amine oxidase activities. J Pharm Pharmacol 41: 97–100

    Article  PubMed  CAS  Google Scholar 

  • Lyles GA, Chalmers J (1992) The metabolism of aminoacetone to methylglyoxal by semicarbazide-sensitive amine oxidase in human umbilical artery. Biochem Pharmacol 31: 1417–1424

    Article  Google Scholar 

  • Malorny GN, Rietbrock N, Schneider M (1965) The oxidation of formaldehyde to formic acid in the blood. A contribution to the metabolism of formaldehyde. Schmiedebergs Arch Exp Path Pharmak 250: 419–436

    CAS  Google Scholar 

  • McKennis H Jr, Turnbull LB, Schwartz SL, Tamake E, Bowman ER (1962) Demethylation in the metabolism of (-)-nicotine. J Biol Chem 237: 541–546

    CAS  Google Scholar 

  • McLellan AC, Phillips SA, Thornalley PJ (1992) The assay of methylglyoxal in biological systems by derivatization with diamno-4,5-dimethoxybenzene. Anal Biochem 206: 17–23

    Article  PubMed  CAS  Google Scholar 

  • Moodonier VM, Kohn RR, Cerami A (1984) Accelerated age related browning of human collagen in diabetes mellitus. Proc Natl Acad Sci 81: 583–581

    Article  Google Scholar 

  • Morel DW, Hessler JR, Chisholm GM (1983) Low density lipoprotein cytotoxicity induced by free radical peroxidation of lipid. J Lipid Res 24: 1070–1076

    PubMed  CAS  Google Scholar 

  • More S (1981) Vascular injury and atherosclerosis. Marcel Dekker, New York

    Google Scholar 

  • Mullarkey CJ, Edelstein D, Brownlee M (1990) Free radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes. Biochem Biophys Res Comm 173: 932–939

    Article  PubMed  CAS  Google Scholar 

  • Nelson TJ, Boor PJ (1982) Allylamine cardiotoxicity. IV. Metabolism to acrolein by cardiovascular tissues. Biochem Pharmacol 31: 509–514

    Article  PubMed  CAS  Google Scholar 

  • Nilsson SE, Tryding N, Tufvesson G (1968) Serum monoamine oxidase in diabetes mellitus and some other internal diseases. Acta Med Scand 184: 105–108

    Article  PubMed  CAS  Google Scholar 

  • Nixon R (1972) Volatile amines in mouse brain: a radioassay with picogram sensitivity. Anal Biochem 48: 460–470

    Article  PubMed  CAS  Google Scholar 

  • O’Brien RE, Panangiotopoulos S, Cooper MS, Jerums G (1992) Anti-atherogenic effect of aminoguanidine, an inhibitor of advanced glycation. Diabetes 41[Suppl 1]: 16A

    Google Scholar 

  • Ohkuwa T, Sato Y, Naoi M (1995) Hydroxyl radical formation in diabetic rats induced by streptozotocin. Life Sci 56: 1789–1798

    Article  PubMed  CAS  Google Scholar 

  • Picard S, Parathasarathy S, Fruebis J, Witztum JL (1992) Aminoguanidine inhibits oxidative modification of low density lipoprotein protein and the subsequent increase in uptake by macrophage scavenger receptors. Proc Natl Acad Sci USA 89: 6876–6880

    Article  PubMed  CAS  Google Scholar 

  • Pirart J (1978) Diabetes mellitus and its degenerative complications: a prospective study of 4,400 patients observed between 1947 and 1973. Diabetes Care 1: 168–188

    Google Scholar 

  • Precious E, Gunn CE, Lyles GA (1988) Deamination of methylamine by semicarbazide-sensitive amine oxidase in human umbilical artery and rat aorta. Biochem Pharmacol 37: 707–713

    Article  PubMed  CAS  Google Scholar 

  • Rand LI (1991) Diabetic retinopathy: can we modify its course? Am J Med 90[Suppl 2A]: 66–69

    Article  Google Scholar 

  • Reidy MA, Bowyer DE (1978) Distortion of endothelial repair. The effect of hypercholesterolemia on regeneration of aortic endothelium following injury by endototoxin. Atherosclerosis 29: 459–466

    Article  PubMed  CAS  Google Scholar 

  • Ross R (1986) The pathogenesis of atherosclerosis-an update. N Engl J Med 314: 488–500

    Article  PubMed  CAS  Google Scholar 

  • Ross R, Harker L (1976) Hyperlipidemia and atherosclerosis. Chronic hyperlipidemia initiates and maintains lesion by endothelial cell desquamation and lipid accumulation. Science 193: 1094–1100

    Article  PubMed  CAS  Google Scholar 

  • Regnstrom J, Nilsson J, Tornvall P, Landou C, Harnstein A (1987) Susceptibility of low density lipoprotein oxidation and coronary atherosclerosis in man. Lancet 339:1183–1186

    Article  Google Scholar 

  • Ryder TA, Mackenzie ML, Pryse-Davies ML, Glover V, Lewinsohn R, Sandler M (1979) A coupled peroxidative oxidation technique for the histochemical localization of monoamine oxidase A and B and benzylamine oxidase. Histochem 62: 93–100

    Article  CAS  Google Scholar 

  • Sackett DL, Winkelstein W (1967) The relationship between cigarette usage and aortic atherosclerosis. Am J Epidemiol 86: 264–270

    PubMed  CAS  Google Scholar 

  • Sato Y, Hotta N, Sakamonto N, Matsuoka S, Ohishin N, Yagi IK (1979) Lipid peroxide levels in plasma of diabetic patients. Biochem Med 21: 104–107

    Article  PubMed  CAS  Google Scholar 

  • Schayer RW, Smiley LR, Kaplan HE (1952) The metabolism of epinephrine containing isotopic carbon. J Biol Chem 198: 545–551

    PubMed  CAS  Google Scholar 

  • Selwood T, Thornalley PJ (1993) Binding of methylglyoxal to albumin and formation of fluorescent adducts. Inhibition by arginine, Na-acetylarginine and aminoguanidine. Biochem Soc Trans 21: 170S

    Google Scholar 

  • Smith AD, Jepson JB (1967) Chromatography of urinary and tissue amines and amino alcohols as 2,4-dinitrophenyl derivatives prepared with 2-nitrobenzene-sulfonic acid. Anal Biochem 18: 36–45

    Article  CAS  Google Scholar 

  • Sies H (1991) Oxidative stress; oxidants and antioxidants. Academic Press, London

    Google Scholar 

  • Soulis-Liparota T, Cooper M, Papazoglou D, Clarke B, Jerums G (1991) Retardation by aminoguanidine of development of albuminuria, mesangial expansion and tissue fluorescence in streptozotocin induced diabetic rats. Diabetes 40: 1328–1335

    Article  PubMed  CAS  Google Scholar 

  • Strong JP, Richards ML (1976) Cigarette smoking and atherosclerosis in autopsied men. Atherosclerosis 23: 451–476

    Article  PubMed  CAS  Google Scholar 

  • Tesfamariam B, Cohen RA (1992) Free radicals mediate endothelial cell dysfunction caused by elevated glucose. Am J Physiol 263: H321–H326

    PubMed  CAS  Google Scholar 

  • Thomas PK (1991) Diabetic neuropathy: models, mechanisms and mayhem. Can J Neurol Sci 19: 1–7

    Google Scholar 

  • Thornalley PJ (1993) The glyoxalase system in health and disease. Mol Asp Med 14: 287–371

    Article  CAS  Google Scholar 

  • Thornalley PJ (1994) Methylglyoxal, glyoxalases and the development of diabetic complications. Amino Acids 6: 15–23

    Article  CAS  Google Scholar 

  • Tilton RG, Chang K, Hasan KS, Smith SR, Petrash JM, Misko TP, Moore WM, Currie MG, Corbett JA, McDaniel ML, Williamson JR (1993) Prevention of diabetic dysfunction by guanidines. Inhibition of nitric oxide synthase versus advanced glycation end product formation. Diabetes 42: 221–232

    CAS  Google Scholar 

  • Trézl L, Török G, Vasvári G, Pipek J (1992) Formation of burst chemiluminescence, excited aldehydes, and singlet oxygen in model reactions and from carcinogenic compound in rat liver S9 fractions. In: Tyihak E (ed) Role of formaldehyde in biological systems. Hungarian Biochem Soc, Sopron

    Google Scholar 

  • Tryding N, Nilsson SE, Tufvesson G, Berg R, Carlstrom S, Elmfors B, Nilsson JE (1969) Physiological and pathological influences on serum monoamine oxidase level. Scan J Clin Lab Invest 23: 79–84

    Article  CAS  Google Scholar 

  • Tsuboi S, Kawase M, Takaka A, Hirmatus M, Wada Y, Kawakami Y, Ikeka M, Ohmori S (1992) Purification and characterization of formaldehyde dehydrogenase from rat liver cytosol. J Biochem 111: 465–471

    PubMed  CAS  Google Scholar 

  • US Dept Health and Human Services (1982) Constituents of tobacco smoke. USPHS Publication No 82-50179, pp 322

    Google Scholar 

  • Uusitupa MIJ, Niskanen LK, Sittonen O, Voutilainen E, Pyorala K (1993) Ten-year cardiovascular mortality in relation to risk factors and abnormalities in lipoprotein composition in type 2 (non-insulin-dependent) diabetic and non-diabetic subjects. Diabetologia 36: 1175–1184

    Article  PubMed  CAS  Google Scholar 

  • Vlassara H, Makita Z, Rayfield E, Freidman E, Cerami A, Morgelo S (1990) In vitro advanced glycation as a signal for monocyte migration in vessel wall: role in diabetes and aging. Circulation 82[Suppl 3]: 92

    Google Scholar 

  • Wibo M, Duong AT, Godfraind T (1980) Subcellular location of semicarbazide-sensitive amine oxidase in rat aorta. Eur J Biochem 112: 87–94

    Article  PubMed  CAS  Google Scholar 

  • Wilens SL, Plair CM (1962) Cigarette smoking and atherosclerosis. Science 138: 975–977

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization (1989) Formaldehyde. Environmental Health Criteria 89, Geneva

    Google Scholar 

  • Yu PH (1986) Monoamine oxidase. In: Boulton AA, Baker GB, Yu PH (eds) Neuromethods, vol V. Neurotransmitter enzymes. Humana Press, Clifton, New Jersey, pp 235–272

    Chapter  Google Scholar 

  • Yu PH (1990) Oxidative deamination of aliphatic amines by rat aorta semicarbazide-sensitive amine oxidase. J Pharm Pharmacol 42: 882–884

    Article  PubMed  CAS  Google Scholar 

  • Yu PH, Zuo DM (1993) Methylamine, a potential endogenous toxin for vascular tissues: formation of formaldehyde via enzymatic deamination and the cytotoxic effects on endothelial cells. Diabetes 42: 594–603

    Article  PubMed  CAS  Google Scholar 

  • Yu PH, Zuo DM (1995) Formaldehyde produced endogenously via deamination of methylamine; a potential risk factor for initiation of endothelial injury. Atherosclerosis 120: 189–197

    Article  Google Scholar 

  • Yu PH, Zuo DM (1997) Aminoguanidine inhibits semicarbazide-sensitive amine oxidase activity; implication for advanced glycation and angiopathy in diabetes. Diabetologia (in press)

    Google Scholar 

  • Yu, PH, Lai CT, Zuo DM (1997) Evidence of formation of formaldehyde from adrenaline in vivo; a potential risk factor endothelial damage. Neurochem Res 22: 615–620

    Article  PubMed  CAS  Google Scholar 

  • Yu PH, Zuo DM, Davis BA (1993) Human tissue and serum semicarbazide-sensitive amine oxidase: species heterogeneity. Biochem Pharmacol 47: 1055–1059

    Article  Google Scholar 

  • Yuen CT, Easton D, Misch KJ, Rhodes EL (1987) Increased activity of serum amine oxidase in granuloma annulare, necrobiosis lipoidica and diabetes. Br J Dermatol 116: 643–649

    Article  PubMed  CAS  Google Scholar 

  • Zeisel SH, Dacosta KA (1986) Increase in human exposure to methylamine precursors of N-nitrosamines after eating fish. Cancer Res 46: 6136–6138

    PubMed  CAS  Google Scholar 

  • Zeisel SH, Wishnok JS, Blusztajn JK (1983) Formation of methylamines from ingested choline and lecithin. J Pharmacol Exp Ther 225: 320–324

    PubMed  CAS  Google Scholar 

  • Zuo DM, Yu PH (1994) Semicarbazide-sensitive amine oxidase and monoamine oxidase in rat brain microvessels, meninges, retina and eye sclera. Brain Res Bull 33: 307–311

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Wien

About this paper

Cite this paper

Yu, P.H. (1998). Deamination of methylamine and angiopathy; toxicity of formaldehyde, oxidative stress and relevance to protein glycoxidation in diabetes. In: Finberg, J.P.M., Youdim, M.B.H., Riederer, P., Tipton, K.F. (eds) MAO — The Mother of all Amine Oxidases. Journal of Neural Transmission. Supplement, vol 52. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6499-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6499-0_19

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83037-6

  • Online ISBN: 978-3-7091-6499-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics