Skip to main content

The Role of Late I Na in Development of Cardiac Arrhythmias

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 221))

Abstract

Late I Na is an integral part of the sodium current, which persists long after the fast-inactivating component. The magnitude of the late I Na is relatively small in all species and in all types of cardiomyocytes as compared with the amplitude of the fast sodium current, but it contributes significantly to the shape and duration of the action potential. This late component had been shown to increase in several acquired or congenital conditions, including hypoxia, oxidative stress, and heart failure, or due to mutations in SCN5A, which encodes the α-subunit of the sodium channel, as well as in channel-interacting proteins, including multiple β subunits and anchoring proteins. Patients with enhanced late I Na exhibit the type-3 long QT syndrome (LQT3) characterized by high propensity for the life-threatening ventricular arrhythmias, such as Torsade de Pointes (TdP), as well as for atrial fibrillation. There are several distinct mechanisms of arrhythmogenesis due to abnormal late I Na, including abnormal automaticity, early and delayed afterdepolarization-induced triggered activity, and dramatic increase of ventricular dispersion of repolarization. Many local anesthetic and antiarrhythmic agents have a higher potency to block late I Na as compared with fast I Na. Several novel compounds, including ranolazine, GS-458967, and F15845, appear to be the most selective inhibitors of cardiac late I Na reported to date. Selective inhibition of late I Na is expected to be an effective strategy for correcting these acquired and congenital channelopathies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abrahamsson C, Carlsson L, Duker G (1996) Lidocaine and nisoldipine attenuate almokalant-induced dispersion of repolarization and early afterdepolarizations in vitro. J Cardiovasc Electrophysiol 7:1074–1081

    PubMed  CAS  Google Scholar 

  • Abriel H (2010) Cardiac sodium channel Na(v)1.5 and interacting proteins: physiology and pathophysiology. J Mol Cell Cardiol 48:2–11

    PubMed  CAS  Google Scholar 

  • Ackerman MJ, Mohler PJ (2010) Defining a new paradigm for human arrhythmia syndromes: phenotypic manifestations of gene mutations in ion channel- and transporter-associated proteins. Circ Res 107:457–465

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ahern GP, Hsu SF, Klyachko VA, Jackson MB (2000) Induction of persistent sodium current by exogenous and endogenous nitric oxide. J Biol Chem 275:28810–28815

    PubMed  CAS  Google Scholar 

  • Ahern CA, Zhang JF, Wookalis MJ, Horn R (2005) Modulation of the cardiac sodium channel NaV1.5 by Fyn, a Src family tyrosine kinase. Circ Res 96:991–998

    PubMed  CAS  Google Scholar 

  • Ai X, Curran JW, Shannon TR, Bers DM, Pogwizd SM (2005) Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circ Res 97:1314–1322

    PubMed  CAS  Google Scholar 

  • Aiba T, Hesketh GG, Liu T, Carlisle R, Villa-Abrille MC, O’Rourke B, Akar FG, Tomaselli GF (2010) Na+ channel regulation by Ca2+/calmodulin and Ca2+/calmodulin-dependent protein kinase II in guinea-pig ventricular myocytes. Cardiovasc Res 85:454–463

    PubMed Central  PubMed  CAS  Google Scholar 

  • Amin AS, Tan HL, Wilde AAM (2010) Cardiac ion channels in health and disease. Heart Rhythm 7:117–135

    PubMed  Google Scholar 

  • Anderson ME, Braun AP, Wu Y, Lu T, Wu Y, Schulman H, Sung RJ (1998) KN-93, an inhibitor of multifunctional Ca++/calmodulin-dependent protein kinase, decreases early afterdepolarizations in rabbit heart. J Pharmacol Exp Ther 287:996–1006

    PubMed  CAS  Google Scholar 

  • Anderson ME, Brown JH, Bers DM (2011) CaMKII in myocardial hypertrophy and heart failure. J Mol Cell Cardiol 51:468–473

    PubMed Central  PubMed  CAS  Google Scholar 

  • Antzelevitch C (2007) Heterogeneity and cardiac arrhythmias: an overview. Heart Rhythm 4:964–972

    PubMed Central  PubMed  Google Scholar 

  • Antzelevitch C (2008) Drug-induced spatial dispersion of repolarization. Cardiol J 15:100–121

    PubMed Central  PubMed  Google Scholar 

  • Antzelevitch C, Belardinelli L (2006) The role of sodium channel current in modulating transmural dispersion of repolarization and arrhythmogenesis. J Cardiovasc Electrophysiol 17(Suppl 1):S79–S85

    PubMed Central  PubMed  Google Scholar 

  • Antzelevitch C, Oliva A (2006) Amplification of spatial dispersion of repolarization underlies sudden cardiac death associated with catecholaminergic polymorphic VT, long QT, short QT and Brugada syndromes. J Intern Med 259:48–58

    PubMed Central  PubMed  CAS  Google Scholar 

  • Antzelevitch C, Sicouri S (2012) Mechanisms underlying arrhythmogenesis in long QT syndrome. Card Electrophysiol Clin 4:17–27

    Google Scholar 

  • Antzelevitch C, Shimizu W, Yan GX, Sicouri S, Weissenburger J, Nesterenko VV, Burashnikov A, Di Diego JM, Saffitz J, Thomas GP (1999) The M cell: its contribution to the ECG and to normal and abnormal electrical function of the heart. J Cardiovasc Electrophysiol 10:1124–1152

    PubMed  CAS  Google Scholar 

  • Antzelevitch C, Belardinelli L, Zygmunt AC, Burashnikov A, Di Diego JM, Fish JM, Cordeiro JM, Thomas GP (2004) Electrophysiologic effects of ranolazine: a novel anti-anginal agent with antiarrhythmic properties. Circulation 110:904–910

    PubMed Central  PubMed  CAS  Google Scholar 

  • Antzelevitch C, Guerchicoff A, Pollevick GD (2006) The role of spatial dispersion of repolarization in sudden cardiac death. ISHNE World Wide Internet Symposium on Sudden Cardiac Death, http://hf2010.ishne.org/vs/scd-2006/lectures/ing_antzelevitch_charles.pdf

  • Antzelevitch C, Burashnikov A, Sicouri S, Belardinelli L (2011) Electrophysiological basis for the antiarrhythmic actions of ranolazine. Heart Rhythm 8:1281–1290

    PubMed Central  PubMed  Google Scholar 

  • Auerbach DS, Grzda KR, Furspan PB, Sato PY, Mironov S, Jalife J (2011) Structural heterogeneity promotes triggered activity, reflection and arrhythmogenesis in cardiomyocyte monolayers. J Physiol 589:2363–2381

    PubMed Central  PubMed  CAS  Google Scholar 

  • Backs J, Backs T, Neef S, Kreusser MM, Lehmann LH, Patrick DM, Grueter CE, Qi X, Richardson JA, Hill JA, Katus HA, Bassel-Duby R, Maier LS, Olson EN (2009) The delta isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proc Natl Acad Sci U S A 106:2342–2347

    PubMed Central  PubMed  CAS  Google Scholar 

  • Barajas-Martinez H, Hu D, Goodrow RJ Jr, Joyce F, Antzelevitch C (2013) Electrophysiologic characteristics and pharmacologic response of human cardiomyocytes isolated from a patient with hypertrophic cardiomyopathy. Pacing Clin Electrophysiol 36:1512–1515

    PubMed  Google Scholar 

  • Barnett ME, Madgwick DK, Takemoto DJ (2007) Protein kinase C as a stress sensor. Cell Signal 19:1820–1829

    PubMed Central  PubMed  CAS  Google Scholar 

  • Baruscotti M, DiFrancesco D, Robinson RB (2000) Na(+) current contribution to the diastolic depolarization in newborn rabbit SA node cells. Am J Physiol Heart Circ Physiol 279:H2303–H2309

    PubMed  CAS  Google Scholar 

  • Bean BP, Cohen CJ, Tsien RW (1983) Lidocaine block of cardiac sodium channels. J Gen Physiol 81:613–642

    PubMed Central  PubMed  CAS  Google Scholar 

  • Belardinelli L, Antzelevitch C, Fraser H (2004) Inhibition of late (sustained/persistent) sodium current: a potential drug target to reduce intracellular sodium-dependent calcium overload and its detrimental effects on cardiomyocyte function. Eur Heart J Suppl 6:i3–i7

    CAS  Google Scholar 

  • Belardinelli L, Shryock JC, Fraser H (2006) Inhibition of the late sodium current as a potential cardioprotective principle: effects of the late sodium current inhibitor ranolazine. Heart 92(Suppl 4):iv6–iv14

    PubMed Central  PubMed  CAS  Google Scholar 

  • Belardinelli L, Liu G, Smith-Maxwell C, Wang WQ, El-Bizri N, Hirakawa R, Karpinski S, Kornyeyev D, Li CH, Hu L, Li XJ, Crumb W, Wu L, Koltun D, Zablocki J, Yao L, Dhalla AK, Rajamani S, Shryock J (2013) A novel, potent, and selective inhibitor of cardiac late sodium current suppresses experimental arrhythmias. J Pharmacol Exp Ther 344:23–32

    PubMed  CAS  Google Scholar 

  • Ben CE, Boutjdir M, Himel HD, El-Sherif N (2008) Role of subendocardial Purkinje network in triggering torsade de pointes arrhythmia in experimental long QT syndrome. Europace 10:1218–1223

    Google Scholar 

  • Benito B, Brugada R, Perich RM, Lizotte E, Cinca J, Mont L, Berruezo A, Tolosana JM, Freixa X, Brugada P, Brugada J (2008) A mutation in the sodium channel is responsible for the association of long QT syndrome and familial atrial fibrillation. Heart Rhythm 5:1434–1440

    PubMed  Google Scholar 

  • Bennett PB, Yazawa K, Makita N, George AL Jr (1995) Molecular mechanism for an inherited cardiac arrhythmia. Nature 376:683–685

    PubMed  CAS  Google Scholar 

  • Benoist D, Stones R, Drinkhill MJ, Benson AP, Yang Z, Cassan C, Gilbert SH, Saint DA, Cazorla O, Steele DS, Bernus O, White E (2012) Cardiac arrhythmia mechanisms in rats with heart failure induced by pulmonary hypertension. Am J Physiol Heart Circ Physiol 302:H2381–H2395

    PubMed Central  PubMed  CAS  Google Scholar 

  • Blaufox AD, Tristani-Firouzi M, Seslar S, Sanatani S, Trivedi B, Fischbach P, Paul T, Young ML, Tisma-Dupanovic S, Silva J, Cuneo B, Fournier A, Singh H, Tanel RE, Etheridge SP (2012) Congenital long QT 3 in the pediatric population. Am J Cardiol 109:1459–1465

    PubMed  Google Scholar 

  • Boutjdir M, El-Sherif N (1991) Pharmacological evaluation of early afterdepolarisations induced by sea anemone toxin (ATXII) in dog heart. Cardiovasc Res 25:815–819

    PubMed  CAS  Google Scholar 

  • Bryant SM, Wan X, Shipsey SJ, Hart G (1998) Regional differences in the delayed rectifier current (IKr and IKs) contribute to the differences in action potential duration in basal left ventricular myocytes in guinea-pig. Cardiovasc Res 40:322–331

    PubMed  CAS  Google Scholar 

  • Burashnikov A, Di Diego JM, Zygmunt AC, Belardinelli L, Antzelevitch C (2007) Atrium-selective sodium channel block as a strategy for suppression of atrial fibrillation: differences in sodium channel inactivation between atria and ventricles and the role of ranolazine. Circulation 116:1449–1457

    PubMed Central  PubMed  CAS  Google Scholar 

  • Burnes JE, Ghanem RN, Waldo AL, Rudy Y (2001) Imaging dispersion of myocardial repolarization, I: comparison of body- surface and epicardial measures. Circulation 104:1299–1305

    PubMed  CAS  Google Scholar 

  • Capogrossi MC, Houser SR, Bahinski A, Lakatta EG (1987) Synchronous occurrence of spontaneous localized calcium release from the sarcoplasmic reticulum generates action potentials in rat cardiac ventricular myocytes at normal resting membrane potential. Circ Res 61:498–503

    PubMed  CAS  Google Scholar 

  • Carmeliet E (1987a) Slow inactivation of the sodium current in rabbit cardiac Purkinje fibers. Pflugers Arch 408:18–26

    PubMed  CAS  Google Scholar 

  • Carmeliet E (1987b) Voltage-dependent block by tetrodotoxin of the sodium channel in rabbit cardiac Purkinje fibers. Biophys J 51:109–114

    PubMed Central  PubMed  CAS  Google Scholar 

  • Carter AJ, Grauert M, Pschorn U, Bechtel WD, Bartmann-Lindholm C, Qu Y, Scheuer T, Catterall WA, Weiser T (2000) Potent blockade of sodium channels and protection of brain tissue from ischemia by BIII 890 CL. Proc Natl Acad Sci U S A 97:4944–4949

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chaitman BR (2006) Ranolazine for the treatment of chronic angina and potential use in other cardiovascular conditions. Circulation 113:2462–2472

    PubMed  Google Scholar 

  • Chandler NJ, Greener ID, Tellez JO, Inada S, Musa H, Molenaar P, DiFrancesco D, Baruscotti M, Longhi R, Anderson RH, Billeter R, Sharma V, Sigg DC, Boyett MR, Dobrzynski H (2009) Molecular architecture of the human sinus node: insights into the function of the cardiac pacemaker. Circulation 119:1562–1575

    PubMed  Google Scholar 

  • Chandra R, Starmer CF, Grant AO (1998) Multiple effects of KPQ deletion mutation on gating of human cardiac Na+ channels expressed in mammalian cells. Am J Physiol 274:H1643–H1654

    PubMed  CAS  Google Scholar 

  • Chen YJ, Chen SA, Chang MS, Lin CI (2000) Arrhythmogenic activity of cardiac muscle in pulmonary veins of the dog: implication for the genesis of atrial fibrillation. Cardiovasc Res 48:265–273

    PubMed  CAS  Google Scholar 

  • Cheung DW (1981) Electrical activity of the pulmonary vein and its interaction with the right atrium in the guinea-pig. J Physiol 314:445–456

    PubMed Central  PubMed  CAS  Google Scholar 

  • Clancy CE, Rudy Y (1999) Linking a genetic defect to its cellular phenotype in a cardiac arrhythmia. Nature 400:566–569

    PubMed  CAS  Google Scholar 

  • Clancy CE, Tateyama M, Kass RS (2002) Insights into the molecular mechanisms of bradycardia-triggered arrhythmias in long QT-3 syndrome. J Clin Invest 110:1251–1262

    PubMed Central  PubMed  CAS  Google Scholar 

  • Colatsky TJ (1982) Mechanisms of action of lidocaine and quinidine on action potential duration in rabbit cardiac Purkinje fibers: an effect on steady-state sodium current? Circ Res 50:17–27

    PubMed  CAS  Google Scholar 

  • Coppini R, Ferrantini C, Yao L, Fan P, Del LM, Stillitano F, Sartiani L, Tosi B, Suffredini S, Tesi C, Yacoub M, Olivotto I, Belardinelli L, Poggesi C, Cerbai E, Mugelli A (2013) Late sodium current inhibition reverses electromechanical dysfunction in human hypertrophic cardiomyopathy. Circulation 127:575–584

    PubMed  CAS  Google Scholar 

  • Coraboeuf E, Deroubaix E, Coulombe A (1979) Effect of tetrodotoxin on action potentials of the conducting system in the dog heart. Am J Physiol 236:H561–H567

    PubMed  CAS  Google Scholar 

  • Curran J, Brown KH, Santiago DJ, Pogwizd S, Bers DM, Shannon TR (2010) Spontaneous Ca waves in ventricular myocytes from failing hearts depend on Ca(2+)-calmodulin-dependent protein kinase II. J Mol Cell Cardiol 49:25–32

    PubMed Central  PubMed  CAS  Google Scholar 

  • Damiano BP, Stump GL, Yagel SK (1991) Investigation of electrophysiologic mechanisms for the antiarrhythmic actions of R 56865 in cardiac glycoside toxicity. J Cardiovasc Pharmacol 18:415–428

    PubMed  CAS  Google Scholar 

  • Darbar D, Kannankeril PJ, Donahue BS, Kucera G, Stubblefield T, Haines JL, George AL Jr, Roden DM (2008) Cardiac sodium channel (SCN5A) variants associated with atrial fibrillation. Circulation 117:1927–1935

    PubMed Central  PubMed  CAS  Google Scholar 

  • Denac H, Mevissen M, Scholtysik G (2000) Structure, function and pharmacology of voltage-gated sodium channels. Naunyn Schmiedebergs Arch Pharmacol 362:453–479

    PubMed  CAS  Google Scholar 

  • Di Diego JM, Antzelevitch C (1993) Pinacidil-induced electrical heterogeneity and extrasystolic activity in canine ventricular tissues. Does activation of ATP-regulated potassium current promote phase 2 reentry? Circulation 88:1177–1189

    PubMed  Google Scholar 

  • Eddlestone GT, Zygmunt AC, Antzelevitch C, Eddlestone GT, Zygmunt AC, Antzelevitch C (1996) Larger late sodium current contributes to the longer action potential of the M cell in canine ventricular myocardium. Pacing Clin Electrophysiol 19(Pt 2):569, Abstract

    Google Scholar 

  • Edrich T, Wang SY, Wang GK (2005) State-dependent block of human cardiac hNav1.5 sodium channels by propafenone. J Membr Biol 207:35–43

    PubMed  CAS  Google Scholar 

  • Eigel BN, Gursahani H, Hadley RW (2004) ROS are required for rapid reactivation of Na+/Ca2+ exchanger in hypoxic reoxygenated guinea pig ventricular myocytes. Am J Physiol Heart Circ Physiol 286:H955–H963

    PubMed  CAS  Google Scholar 

  • Erickson JR, He BJ, Grumbach IM, Anderson ME (2011) CaMKII in the cardiovascular system: sensing redox states. Physiol Rev 91:889–915

    PubMed Central  PubMed  CAS  Google Scholar 

  • Escande D, Coraboeuf E, Planche C, Lacour-Gayet F (1986) Effects of potassium conductance inhibitors on spontaneous diastolic depolarization and abnormal automaticity in human atrial fibers. Basic Res Cardiol 81:244–257

    PubMed  CAS  Google Scholar 

  • Fedida D (2007) Vernakalant (RSD1235): a novel, atrial-selective antifibrillatory agent. Expert Opin Investig Drugs 16:519–532

    PubMed  CAS  Google Scholar 

  • Fedida D, Noble D, Rankin AC, Spindler AJ (1987) The arrhythmogenic transient inward current Iti and related contraction in isolated guinea-pig ventricular myocytes. J Physiol (London) 392:523–542

    CAS  Google Scholar 

  • Fedida D, Orth PM, Hesketh JC, Ezrin AM (2006) The role of late I and antiarrhythmic drugs in EAD formation and termination in Purkinje fibers. J Cardiovasc Electrophysiol 17(Suppl 1):S71–S78

    PubMed  Google Scholar 

  • Ferrier GR, Saunders JH, Mendez C (1973) A cellular mechanism for the generation of ventricular arrhythmias by acetylstrophanthidin. Circ Res 32:600–609

    PubMed  CAS  Google Scholar 

  • Fish JM, Antzelevitch C (2008) Cellular mechanism and arrhythmogenic potential of T-wave alternans in the Brugada syndrome. J Cardiovasc Electrophysiol 19:301–308

    PubMed Central  PubMed  Google Scholar 

  • Fraser H, Belardinelli L, Wang L, Light PE, McVeigh JJ, Clanachan AS (2006) Ranolazine decreases diastolic calcium accumulation caused by ATX-II or ischemia in rat hearts. J Mol Cell Cardiol 41:1031–1038

    PubMed  CAS  Google Scholar 

  • Fujiwara K, Tanaka H, Mani H, Nakagami T, Takamatsu T (2008) Burst emergence of intracellular Ca2+ waves evokes arrhythmogenic oscillatory depolarization via the Na+-Ca2+ exchanger: simultaneous confocal recording of membrane potential and intracellular Ca2+ in the heart. Circ Res 103:509–518

    PubMed  CAS  Google Scholar 

  • Galinier M, Vialette JC, Fourcade J, Cabrol P, Dongay B, Massabuau P, Boveda S, Doazan JP, Fauvel JM, Bounhoure JP (1998) QT interval dispersion as a predictor of arrhythmic events in congestive heart failure. Importance of aetiology. Eur Heart J 19:1054–1062

    PubMed  CAS  Google Scholar 

  • Gautier M, Zhang H, Fearon IM (2008) Peroxynitrite formation mediates LPC-induced augmentation of cardiac late sodium currents. J Mol Cell Cardiol 44:241–251

    PubMed  CAS  Google Scholar 

  • Gavillet B, Rougier JS, Domenighetti AA, Behar R, Boixel C, Ruchat P, Lehr HA, Pedrazzini T, Abriel H (2006) Cardiac sodium channel Nav1.5 is regulated by a multiprotein complex composed of syntrophins and dystrophin. Circ Res 99:407–414

    PubMed  CAS  Google Scholar 

  • Gelband H, Bush HL, Rosen MR, Myerburg RJ, Hoffman BF (1972) Electrophysiologic properties of isolated preparations of human atrial myocardium. Circ Res 30:293–300

    PubMed  CAS  Google Scholar 

  • Ghanem RN, Burnes JE, Waldo AL, Rudy Y (2001) Imaging dispersion of myocardial repolarization, II: noninvasive reconstruction of epicardial measures. Circulation 104:1306–1312

    PubMed  CAS  Google Scholar 

  • Glass A, Sicouri S, Antzelevitch C (2007) Development of a coronary-perfused interventricular septal preparation as a model for studying the role of the septum in arrhythmogenesis. J Electrocardiol 40:S142–S144

    PubMed Central  PubMed  Google Scholar 

  • Grant AO, Trantham JL, Brown KK, Strauss HC (1982) pH-dependent effects of quinidine on the kinetics of dV/dtmax in guinea pig ventricular myocardium. Circ Res 50:210–217

    PubMed  CAS  Google Scholar 

  • Grant AO, Dietz MA, Gilliam FR III, Starmer CF (1989) Blockade of cardiac sodium channels by lidocaine. Single-channel analysis. Circ Res 65:1247–1262

    PubMed  CAS  Google Scholar 

  • Grauert M, Bechtel WD, Weiser T, Stransky W, Nar H, Carter AJ (2002) Synthesis and structure-activity relationships of 6,7-benzomorphan derivatives as use-dependent sodium channel blockers for the treatment of stroke. J Med Chem 45:3755–3764

    PubMed  CAS  Google Scholar 

  • Guo T, Zhang T, Mestril R, Bers DM (2006) Ca2+/calmodulin-dependent protein kinase II phosphorylation of ryanodine receptor does affect calcium sparks in mouse ventricular myocytes. Circ Res 99:398–406

    PubMed  CAS  Google Scholar 

  • Guo D, Young LH, Wu Y, Belardinelli L, Kowey PR, Yan GX (2010) Increased late sodium current in left atrial myocytes of rabbits with left ventricular hypertrophy: its role in the genesis of atrial arrhythmias. Am J Physiol Heart Circ Physiol 298:H1375–H1381

    PubMed  CAS  Google Scholar 

  • Haigney MC, Lakatta EG, Stern MD, Silverman HS (1994) Sodium channel blockade reduces hypoxic sodium loading and sodium-dependent calcium loading. Circulation 90:391–399

    PubMed  CAS  Google Scholar 

  • Hammarstrom AK, Gage PW (2002) Hypoxia and persistent sodium current. Eur Biophys J 31:323–330

    PubMed  Google Scholar 

  • Harris DR, Green WL, Craelius W (1991) Acute thyroid hormone promotes slow inactivation of sodium current in neonatal cardiac myocytes. Biochim Biophys Acta 1095:175–181

    PubMed  CAS  Google Scholar 

  • Hartmann HA, Tiedeman AA, Chen S-F, Brown AM, Kirsch GE (1994) Effects of III-IV linker mutations on human heart Na+ channel inactivation gating. Circ Res 75:114–122

    PubMed  CAS  Google Scholar 

  • Heath BM, Cui Y, Worton S, Lawton B, Ward G, Ballini E, Doe CP, Ellis C, Patel BA, McMahon NC (2011) Translation of flecainide- and mexiletine-induced cardiac sodium channel inhibition and ventricular conduction slowing from nonclinical models to clinical. J Pharmacol Toxicol Methods 63:258–268

    PubMed  CAS  Google Scholar 

  • Hoch B, Meyer R, Hetzer R, Krause EG, Karczewski P (1999) Identification and expression of delta-isoforms of the multifunctional Ca2+/calmodulin-dependent protein kinase in failing and nonfailing human myocardium. Circ Res 84:713–721

    PubMed  CAS  Google Scholar 

  • Hoeker GS, Katra RP, Wilson LD, Plummer BN, Laurita KR (2009) Spontaneous calcium release in tissue from the failing canine heart. Am J Physiol Heart Circ Physiol 297:H1235–H1242

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hogan PM, Davis LD (1968) Evidence for specialized fibers in the canine right atrium. Circ Res 23:387–396

    PubMed  CAS  Google Scholar 

  • Honerjager P (1982) Cardioactive substances that prolong the open state of sodium channels. Rev Physiol Biochem Pharmacol 92:1–74

    PubMed  CAS  Google Scholar 

  • Hove-Madsen L, Llach A, Bayes-Genis A, Roura S, Rodriguez FE, Aris A, Cinca J (2004) Atrial fibrillation is associated with increased spontaneous calcium release from the sarcoplasmic reticulum in human atrial myocytes. Circulation 110:1358–1363

    PubMed  CAS  Google Scholar 

  • Hoyer K, Song Y, Wang D, Phan D, Balser J, Ingwall JS, Belardinelli L, Shryock JC (2011) Reducing the late sodium current improves cardiac fuction during sodium pump inhibition by ouabain. J Pharmacol Exp Ther 337:513–523

    PubMed  CAS  Google Scholar 

  • Hund TJ, Koval OM, Li J, Wright PJ, Qian L, Snyder JS, Gudmundsson H, Kline CF, Davidson NP, Cardona N, Rasband MN, Anderson ME, Mohler PJ (2010) A beta(IV)-spectrin/CaMKII signaling complex is essential for membrane excitability in mice. J Clin Invest 120:3508–3519

    PubMed Central  PubMed  CAS  Google Scholar 

  • Inomata N, Ishihara T (1988) Mechanism of inhibition by SUN 1165, a new Na channel blocking antiarrhythmic agent, of cardiac glycoside-induced triggered activity. Eur J Pharmacol 145:313–322

    PubMed  CAS  Google Scholar 

  • Isenberg G, Ravens U (1984) The effects of the anemonia sulcata toxin (ATX II) on membrane currents of isolated mammalian myocytes. J Physiol 357:127–149

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ji Y, Li B, Reed TD, Lorenz JN, Kaetzel MA, Dedman JR (2003) Targeted inhibition of Ca2+/calmodulin-dependent protein kinase II in cardiac longitudinal sarcoplasmic reticulum results in decreased phospholamban phosphorylation at threonine 17. J Biol Chem 278:25063–25071

    PubMed  CAS  Google Scholar 

  • Jia S, Lian J, Guo D, Xue X, Patel C, Yang L, Yuan Z, Ma A, Yan GX (2011) Modulation of the late sodium current by the toxin, ATX-II, and ranolazine affects the reverse use-dependence and proarrhythmic liability of I(Kr) blockade. Br J Pharmacol 164:308–316

    PubMed Central  PubMed  CAS  Google Scholar 

  • John GW, Letienne R, Le GB, Pignier C, Vacher B, Patoiseau JF, Colpaert FC, Coulombe A (2004) KC 12291: an atypical sodium channel blocker with myocardial antiischemic properties. Cardiovasc Drug Rev 22:17–26

    PubMed  CAS  Google Scholar 

  • Josephson IR, Sperelakis N (1989) Tetrodotoxin differentially blocks peak and steady-state sodium channel currents in early embryonic chick ventricular myocytes. Pflugers Arch 414:354–359

    PubMed  CAS  Google Scholar 

  • Ju YK, Saint DA, Gage PW (1996) Hypoxia increases persistent sodium current in rat ventricular myocytes. J Physiol 497(Pt 2):337–347

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kass RS, Lederer WJ, Tsien RW et al (1978) Role of calcium ions in transient inward currents and aftercontractions induced by strophantidin in cardiac Purkinje fibers. J Physiol (London) 281:187–208

    CAS  Google Scholar 

  • Keung ECH, Aronson RS (1981) Transmembrane action potentials and the electrocardiogram in rats with renal hypertension. Cardiovasc Res 15:611–614

    PubMed  CAS  Google Scholar 

  • Kirchhefer U, Schmitz W, Scholz H, Neumann J (1999) Activity of cAMP-dependent protein kinase and Ca2+/calmodulin-dependent protein kinase in failing and nonfailing human hearts. Cardiovasc Res 42:254–261

    PubMed  CAS  Google Scholar 

  • Kiyosue T, Arita M (1989) Late sodium current and its contribution to action potential configuration in guinea pig ventricular myocytes. Circ Res 64:389–397

    PubMed  CAS  Google Scholar 

  • Kohlhardt M, Fichtner H, Frobe U (1989) Metabolites of the glycolytic pathway modulate the activity of single cardiac Na+ channels. FASEB J 3:1963–1967

    PubMed  CAS  Google Scholar 

  • Kort AA, Lakatta EG, Marban E, Stern MD, Wier WG (1985) Fluctuations in intracellular calcium concentration and their effect on tonic tension in canine cardiac Purkinje fibres. J Physiol (London) 367:291–308

    CAS  Google Scholar 

  • Le Grand B, Talmant JM, Rieu JP, Patoiseau JF, Colpaert FC, John GW (1995) Investigation of the mechanism by which ketanserin prolongs the duration of the cardiac action potential. J Cardiovasc Pharmacol 26:803–809

    PubMed  Google Scholar 

  • Li Z, Ai T, Samani K, Xi Y, Tzeng HP, Xie M, Wu S, Ge S, Taylor MD, Dong JW, Cheng J, Ackerman MJ, Kimura A, Sinagra G, Brunelli L, Faulkner G, Vatta M (2010) A ZASP missense mutation, S196L, leads to cytoskeletal and electrical abnormalities in a mouse model of cardiomyopathy. Circ Arrhythm Electrophysiol 3:646–656

    PubMed  CAS  Google Scholar 

  • Lipkind GM, Fozzard HA (2005) Molecular modeling of local anesthetic drug binding by voltage-gated sodium channels. Mol Pharmacol 68:1611–1622

    PubMed  CAS  Google Scholar 

  • Liu Y, DeFelice LJ, Mazzanti M (1992) Na channels that remain open throughout the cardiac action potential plateau. Biophys J 63:654–662

    PubMed Central  PubMed  CAS  Google Scholar 

  • Liu H, Atkins J, Kass RS (2003) Common molecular determinants of flecainide and lidocaine block of heart Na + channels: evidence from experiments with neutral and quaternary flecainide analogues. J Gen Physiol 121:199–214

    PubMed Central  PubMed  CAS  Google Scholar 

  • Liu X, Williams JB, Sumpter BR, Bevensee MO (2007) Inhibition of the Na/bicarbonate cotransporter NBCe1-A by diBAC oxonol dyes relative to niflumic acid and a stilbene. J Membr Biol 215:195–204

    PubMed  CAS  Google Scholar 

  • Lopez-Santiago LF, Meadows LS, Ernst SJ, Chen C, Malhotra JD, McEwen DP, Speelman A, Noebels JL, Maier SK, Lopatin AN, Isom LL (2007) Sodium channel Scn1b null mice exhibit prolonged QT and RR intervals. J Mol Cell Cardiol 43:636–647

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lu HR, De CF (1993) R 56 865, a Na+/Ca(2+)-overload inhibitor, protects against aconitine-induced cardiac arrhythmias in vivo. J Cardiovasc Pharmacol 22:120–125

    PubMed  CAS  Google Scholar 

  • Ma J, Luo A, Wu L, Wan W, Zhang P, Ren Z, Zhang S, Qian C, Shryock JC, Belardinelli L (2012) Calmodulin kinase II and protein kinase C mediate the effect of increased intracellular calcium to augment late sodium current in rabbit ventricular myocytes. Am J Physiol Cell Physiol 302:C1141–C1151

    PubMed  CAS  Google Scholar 

  • Maier LS (2009) A novel mechanism for the treatment of angina, arrhythmias, and diastolic dysfunction: inhibition of late INa using ranolazine. J Cardiovasc Pharmacol 54:279–286

    PubMed  CAS  Google Scholar 

  • Maier LS, Zhang T, Chen L, DeSantiago J, Brown JH, Bers DM (2003) Transgenic CaMKIIdeltaC overexpression uniquely alters cardiac myocyte Ca2+ handling: reduced SR Ca2+ load and activated SR Ca2+ release. Circ Res 92:904–911

    PubMed  CAS  Google Scholar 

  • Maier SK, Westenbroek RE, McCormick KA, Curtis R, Scheuer T, Catterall WA (2004) Distinct subcellular localization of different sodium channel a and b subunits in single ventricular myocytes from mouse heart. Circulation 109:1421–1427

    PubMed  CAS  Google Scholar 

  • Makielski JC, Farley AL (2006) Na(+) current in human ventricle: implications for sodium loading and homeostasis. J Cardiovasc Electrophysiol 17(Suppl 1):S15–S20

    PubMed  Google Scholar 

  • Makita N, Horie M, Nakamura T, Ai T, Sasaki K, Yokoi H, Sakurai M, Sakuma I, Otani H, Sawa H, Kitabatake A (2002) Drug-induced long-QT syndrome associated with a subclinical SCN5A mutation. Circulation 106:1269–1274

    PubMed  Google Scholar 

  • Makita N, Behr E, Shimizu W, Horie M, Sunami A, Crotti L, Schulze-Bahr E, Fukuhara S, Mochizuki N, Makiyama T, Itoh H, Christiansen M, McKeown P, Miyamoto K, Kamakura S, Tsutsui H, Schwartz PJ, George AL Jr, Roden DM (2008) The E1784K mutation in SCN5A is associated with mixed clinical phenotype of type 3 long QT syndrome. J Clin Invest 118:2219–2229

    PubMed Central  PubMed  CAS  Google Scholar 

  • Maltsev VA, Undrovinas AI (2006) A multi-modal composition of the late Na+ current in human ventricular cardiomyocytes. Cardiovasc Res 69:116–127

    PubMed Central  PubMed  CAS  Google Scholar 

  • Maltsev VA, Sabbah HN, Higgins RS, Silverman N, Lesch M, Undrovinas AI (1998) Novel, ultraslow inactivating sodium current in human ventricular cardiomyocytes. Circulation 98:2545–2552

    PubMed  CAS  Google Scholar 

  • Maltsev VA, Sabbah HN, Undrovinas AI (2001) Late sodium current is a novel target for amiodarone: studies in failing human myocardium. J Mol Cell Cardiol 33:923–932

    PubMed  CAS  Google Scholar 

  • Maltsev VA, Silverman N, Sabbah HN, Undrovinas AI (2007) Chronic heart failure slows late sodium current in human and canine ventricular myocytes: implications for repolarization variability. Eur J Heart Fail 9:219–227

    PubMed Central  PubMed  CAS  Google Scholar 

  • Maltsev VA, Reznikov V, Undrovinas NA, Sabbah HN, Undrovinas A (2008) Modulation of late sodium current by Ca2+, calmodulin, and CaMKII in normal and failing dog cardiomyocytes: similarities and differences. Am J Physiol Heart Circ Physiol 294:H1597–H1608

    PubMed Central  PubMed  CAS  Google Scholar 

  • Maltsev VA, Kyle JW, Undrovinas A (2009) Late Na+ current produced by human cardiac Na+ channel isoform Nav1.5 is modulated by its b1 subunit. J Physiol Sci 59:217–225

    PubMed Central  PubMed  CAS  Google Scholar 

  • Marban E, Robinson SW, Wier WG (1986) Mechanism of arrhythmogenic delayed and early afterdepolarizations in ferret muscle. J Clin Invest 78:1185–1192

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mary-Rabine L, Hordof AJ, Danilo P, Malm JR, Rosen MR (1980) Mechanisms for impulse initiation in isolated human atrial fibers. Circ Res 47:267–277

    PubMed  CAS  Google Scholar 

  • Mazzone A, Strege PR, Tester DJ, Bernard CE, Faulkner G, Degiorgio R, Makielski JC, Stanghellini V, Gibbons SJ, Ackerman MJ, Farrugia G (2008) A mutation in telethonin alters Nav1.5 function. J Biol Chem 283:16537–16544

    PubMed Central  PubMed  CAS  Google Scholar 

  • McNair WP, Ku L, Taylor MR, Fain PR, Dao D, Wolfel E, Mestroni L (2004) SCN5A mutation associated with dilated cardiomyopathy, conduction disorder, and arrhythmia1. Circulation 110:2163–2167

    PubMed  CAS  Google Scholar 

  • Meadows LS, Isom LL (2005) Sodium channels as macromolecular complexes: implications for inherited arrhythmia syndromes. Cardiovasc Res 67:448–458

    PubMed  CAS  Google Scholar 

  • Medeiros-Domingo A, Kaku T, Tester DJ, Iturralde-Torres P, Itty A, Ye B, Valdivia C, Ueda K, Canizales-Quinteros S, Tusie-Luna MT, Makielski JC, Ackerman MJ (2007) SCN4B-encoded sodium channel b4 subunit in congenital long-QT syndrome. Circulation 116:134–142

    PubMed Central  PubMed  Google Scholar 

  • Mike A, Lukacs P (2010) The enigmatic drug binding site for sodium channel inhibitors. Curr Mol Pharmacol 3:129–144

    PubMed  CAS  Google Scholar 

  • Milberg P, Reinsch N, Wasmer K, Monnig G, Stypmann J, Osada N, Breithardt G, Haverkamp W, Eckardt L (2005) Transmural dispersion of repolarization as a key factor of arrhythmogenicity in a novel intact heart model of LQT3. Cardiovasc Res 65:397–404

    PubMed  CAS  Google Scholar 

  • Mines GR (1914) On circulating excitations in heart muscles and their possible relation to tachycardia and fibrillation. Trans R Soc Can 8:43–52

    Google Scholar 

  • Mohler PJ, Splawski I, Napolitano C, Bottelli G, Sharpe L, Timothy K, Priori SG, Keating MT, Bennett V (2004) A cardiac arrhythmia syndrome caused by loss of ankyrin-B function. Proc Natl Acad Sci U S A 10:9137–9142

    Google Scholar 

  • Moreno JD, Clancy CE (2012) Pathophysiology of the cardiac late Na current and its potential as a drug target. J Mol Cell Cardiol 52:608–619

    PubMed  CAS  Google Scholar 

  • Morrow DA (2007) MERLIN-TIMI-36 (Metabolic Efficiency with Ranolazine for Less Ischemia in NSTE ACS). Clin Cardiol 30:418–419

    Google Scholar 

  • Moss AJ, Zareba W, Schwarz KQ, Rosero S, McNitt S, Robinson JL (2008) Ranolazine shortens repolarization in patients with sustained inward sodium current due to type-3 long-QT syndrome. J Cardiovasc Electrophysiol 19:1289–1293

    PubMed Central  PubMed  Google Scholar 

  • Murray KT, Hu NN, Daw JR, Shin HG, Watson MT, Mashburn AB, George AL Jr (1997) Functional effects of protein kinase C activation on the human cardiac Na+ channel. Circ Res 80:370–376

    PubMed  CAS  Google Scholar 

  • Narahashi T (2008) Tetrodotoxin: a brief history. Proc Jpn Acad Ser B Phys Biol Sci 84:147–154

    PubMed Central  PubMed  CAS  Google Scholar 

  • Neef S, Dybkova N, Sossalla S, Ort KR, Fluschnik N, Neumann K, Seipelt R, Schondube FA, Hasenfuss G, Maier LS (2010) CaMKII-dependent diastolic SR Ca2+ leak and elevated diastolic Ca2+ levels in right atrial myocardium of patients with atrial fibrillation. Circ Res 106:1134–1144

    PubMed  CAS  Google Scholar 

  • Nesterenko VV, Zygmunt AC, Rajamani S, Belardinelli L, Antzelevitch C (2011) Mechanisms of atrial-selective block of Na + channels by ranolazine: II. Insights from a mathematical model. Am J Physiol Heart Circ Physiol 301:H1615–H1624

    PubMed Central  PubMed  CAS  Google Scholar 

  • Noble D, Noble PJ (2006) Late sodium current in the pathophysiology of cardiovascular disease: consequences of sodium-calcium overload. Heart 92(Suppl 4):iv1–iv5

    PubMed Central  PubMed  CAS  Google Scholar 

  • Nof E, Burashnikov A, Antzelevitch C (2010) Cellular basis for atrial fibrillation in an experimental model of short QT1: implications for a pharmacological approach to therapy. Heart Rhythm 7:251–257

    PubMed Central  PubMed  Google Scholar 

  • Orth PM, Hesketh JC, Mak CK, Yang Y, Lin S, Beatch GN, Ezrin AM, Fedida D (2006) RSD1235 blocks late I(Na) and suppresses early afterdepolarizations and torsades de pointes induced by class III agents. Cardiovasc Res 70:486–496

    PubMed  CAS  Google Scholar 

  • Patel C, Antzelevitch C (2008a) Pharmacological approach to the treatment of long and short QT syndromes. Pharmacol Ther 118:138–151

    PubMed Central  PubMed  CAS  Google Scholar 

  • Patel C, Antzelevitch C (2008b) Cellular basis for arrhythmogenesis in an experimental model of the SQT1 form of the short QT syndrome. Heart Rhythm 5:585–590

    PubMed Central  PubMed  Google Scholar 

  • Patlak JB, Ortiz M (1985) Slow currents through single sodium channels of the adult rat heart. J Gen Physiol 86:89–104

    PubMed  CAS  Google Scholar 

  • Petitprez S, Zmoos AF, Ogrodnik J, Balse E, Raad N, El-Haou S, Albesa M, Bittihn P, Luther S, Lehnart SE, Hatem SN, Coulombe A, Abriel H (2011) SAP97 and dystrophin macromolecular complexes determine two pools of cardiac sodium channels Nav1.5 in cardiomyocytes. Circ Res 108:294–304

    PubMed  CAS  Google Scholar 

  • Pignier C, Rougier JS, Vie B, Culie C, Verscheure Y, Vacher B, Abriel H, Le GB (2010) Selective inhibition of persistent sodium current by F 15845 prevents ischaemia-induced arrhythmias. Br J Pharmacol 161:79–91

    PubMed Central  PubMed  CAS  Google Scholar 

  • Pinet C, Algalarrondo V, Sablayrolles S, Le GB, Pignier C, Cussac D, Perez M, Hatem SN, Coulombe A (2008) Protease-activated receptor-1 mediates thrombin-induced persistent sodium current in human cardiomyocytes. Mol Pharmacol 73:1622–1631

    PubMed  CAS  Google Scholar 

  • Remme CA, Verkerk AO, Nuyens D, Van Ginneken AC, Belterman CN, Wilders R, van Roon MA, Tan HL, Wilde AA, Carmeliet P, de Bakker JM, Veldkamp MW, Bezzina CR (2006) Overlap syndrome of cardiac sodium channel disease in mice carrying the equivalent mutation of human SCN5A-1795insD. Circulation 114:2584–2594

    PubMed  CAS  Google Scholar 

  • Restivo M, Caref EB, Kozhevnikov DO, El-Sherif N (2004) Spatial dispersion of repolarization is a key factor in the arrhythmogenicity of long QT syndrome. J Cardiovasc Electrophysiol 15:323–331

    PubMed  Google Scholar 

  • Rivolta I, Abriel H, Tateyama M, Liu H, Memmi M, Vardas P, Napolitano C, Priori SG, Kass RS (2001) Inherited Brugada and LQT-3 syndrome mutations of a single residue of the cardiac sodium channel confer distinct channel and clinical phenotypes. J Biol Chem 276:30623–30630

    PubMed  CAS  Google Scholar 

  • Rodriguez P, Bhogal MS, Colyer J (2003) Stoichiometric phosphorylation of cardiac ryanodine receptor on serine 2809 by calmodulin-dependent kinase II and protein kinase A. J Biol Chem 278:38593–38600

    PubMed  CAS  Google Scholar 

  • Rook MB, Evers MM, Vos MA, Bierhuizen MF (2012) Biology of cardiac sodium channel Nav1.5 expression. Cardiovasc Res 93:12–23

    PubMed  CAS  Google Scholar 

  • Rosen MR, Danilo P Jr (1980) Effects of tetrodotoxin, lidocaine, verapamil and AHR-266 on ouabain induced delayed afterdepolarizations in canine Purkinje fibers. Circ Res 46:117–124

    PubMed  CAS  Google Scholar 

  • Rota M, Vassalle M (2003) Patch-clamp analysis in canine cardiac Purkinje cells of a novel sodium component in the pacemaker range. J Physiol 548:147–165

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ruan Y, Liu N, Priori SG (2009) Sodium channel mutations and arrhythmias. Nat Rev Cardiol 6:337–348

    PubMed  CAS  Google Scholar 

  • Sag CM, Wadsack DP, Khabbazzadeh S, Abesser M, Grefe C, Neumann K, Opiela MK, Backs J, Olson EN, Brown JH, Neef S, Maier SK, Maier LS (2009) Calcium/calmodulin-dependent protein kinase II contributes to cardiac arrhythmogenesis in heart failure. Circ Heart Fail 2:664–675

    PubMed Central  PubMed  CAS  Google Scholar 

  • Saint DA (2006) The role of the persistent Na(+) current during cardiac ischemia and hypoxia. J Cardiovasc Electrophysiol 17(Suppl 1):S96–S103

    PubMed  Google Scholar 

  • Saint DA (2008) The cardiac persistent sodium current: an appealing therapeutic target? Br J Pharmacol 153:1133–1142

    PubMed Central  PubMed  CAS  Google Scholar 

  • Saint DA, Ju YK, Gage PW (1992) A persistent sodium current in rat ventricular myocytes. J Physiol (London) 453:219–231

    CAS  Google Scholar 

  • Sakmann B, Spindler AJ, Bryant SM, Linz KW, Noble D (2000) Distribution of a persistent sodium current across the ventricular wall in guinea-pigs. Circ Res 87:910–914

    PubMed  CAS  Google Scholar 

  • Sarhan MF, Van PF, Ahern CA (2009) A double tyrosine motif in the cardiac sodium channel domain III-IV linker couples calcium-dependent calmodulin binding to inactivation gating. J Biol Chem 284:33265–33274

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sawanobori T, Hirano Y, Hiraoka M (1987) Aconitine-induced delayed afterdepolarization in frog atrium and guinea pig papillary muscles in the presence of low concentrations of Ca2+. Jpn J Physiol 37:59–79

    PubMed  CAS  Google Scholar 

  • Scherer D, von Lowenstern K, Zitron E, Scholz EP, Bloehs R, Kathofer S, Thomas D, Bauer A, Katus HA, Karle CA, Kiesecker C (2008) Inhibition of cardiac hERG potassium channels by tetracyclic antidepressant mianserin. Naunyn Schmiedebergs Arch Pharmacol 378:73–83

    PubMed  CAS  Google Scholar 

  • Scherf D, Romano FJ, Terranova R (1948) Experimental studies on auricular flutter and auricular fibrillation. Am Heart J 36:241–251

    PubMed  CAS  Google Scholar 

  • Schlotthauer K, Bers DM (2000) Sarcoplasmic reticulum Ca(2+) release causes myocyte depolarization. Underlying mechanism and threshold for triggered action potentials. Circ Res 87:774–780

    PubMed  CAS  Google Scholar 

  • Schreibmayer W, Lindner W (1992) Stereoselective interactions of (R)- and (S)-propafenone with the cardiac sodium channel. J Cardiovasc Pharmacol 20:324–331

    PubMed  CAS  Google Scholar 

  • Scirica BM, Morrow DA, Hod H, Murphy SA, Belardinelli L, Hedgepeth CM, Molhoek P, Verheugt FW, Gersh BJ, McCabe CH, Braunwald E (2007) Effect of ranolazine, an antianginal agent with novel electrophysiological properties, on the incidence of arrhythmias in patients with non ST-segment elevation acute coronary syndrome: results from the metabolic efficiency with ranolazine for less ischemia in non ST-elevation ACUTE CORONARY syndrome thrombolysis in myocardial infarction 36 (MERLIN-TIMI 36) randomized controlled trial. Circulation 116:1647–1652

    PubMed  CAS  Google Scholar 

  • Shao D, Okuse K, Djamgoz MB (2009) Protein-protein interactions involving voltage-gated sodium channels: post-translational regulation, intracellular trafficking and functional expression. Int J Biochem Cell Biol 41:1471–1481

    PubMed  CAS  Google Scholar 

  • Shattock MJ, Bers DM (1989) Rat vs. rabbit ventricle: Ca flux and intracellular Na assessed by ion-selective microelectrodes. Am J Physiol 256:C813–C822

    PubMed  CAS  Google Scholar 

  • Sheu SS, Lederer WJ (1985) Lidocaine’s negative inotropic and antiarrhythmic actions: dependence on shortening of action potential duration and reduction of intracellular sodium activity. Circ Res 57:578–590

    PubMed  CAS  Google Scholar 

  • Shimizu W, Antzelevitch C (1997a) Sodium channel block with mexiletine is effective in reducing dispersion of repolarization and preventing torsade de pointes in LQT2 as well as LQT3 models of the long QT syndrome. Pacing Clin Electrophysiol 20:1234, Abstract

    Google Scholar 

  • Shimizu W, Antzelevitch C (1997b) Sodium channel block with mexiletine is effective in reducing dispersion of repolarization and preventing torsade de pointes in LQT2 and LQT3 models of the long-QT syndrome. Circulation 96:2038–2047

    PubMed  CAS  Google Scholar 

  • Shimizu W, Antzelevitch C (1998) Cellular basis for the ECG features of the LQT1 form of the long QT syndrome: effects of b-adrenergic agonists and antagonists and sodium channel blockers on transmural dispersion of repolarization and torsade de pointes. Circulation 98:2314–2322

    PubMed  CAS  Google Scholar 

  • Shimizu W, Antzelevitch C (1999a) Spontaneous and stimulation-induced Torsade de Pointes in LQT1, LQT2 and LQT3 models of the long QT syndrome. Circulation 100(II):359, Abstract

    Google Scholar 

  • Shimizu W, Antzelevitch C (1999b) Cellular basis for long QT, transmural dispersion of repolarization, and Torsade de Pointes in the long QT syndrome. J Electrocardiol 32(Suppl):177–184

    PubMed  Google Scholar 

  • Shryock JC, Song Y, Rajamani S, Antzelevitch C, Belardinelli L (2013) The arrhythmogenic consequences of increasing late INa in the cardiomyocyte. Cardiovasc Res 99:600–611

    PubMed  CAS  Google Scholar 

  • Sicouri S, Fish J, Antzelevitch C (1994) Distribution of M cells in the canine ventricle. J Cardiovasc Electrophysiol 5:824–837

    PubMed  CAS  Google Scholar 

  • Sicouri S, Quist M, Antzelevitch C (1996) Evidence for the presence of M cells in the guinea pig ventricle. J Cardiovasc Electrophysiol 7:503–511

    PubMed  CAS  Google Scholar 

  • Sicouri S, Antzelevitch D, Heilmann C, Antzelevitch C (1997a) Effects of sodium channel block with mexiletine to reverse action potential prolongation in in vitro models of the long QT syndrome. J Cardiovasc Electrophysiol 8:1280–1290

    PubMed  CAS  Google Scholar 

  • Sicouri S, Moro S, Litovsky SH, Elizari MV, Antzelevitch C (1997b) Chronic amiodarone reduces transmural dispersion of repolarization in the canine heart. J Cardiovasc Electrophysiol 8:1269–1279

    PubMed  CAS  Google Scholar 

  • Sicouri S, Glass A, Ferreiro M, Antzelevitch C (2010) Transseptal dispersion of repolarization and its role in the development of torsade de pointes arrhythmias. J Cardiovasc Electrophysiol 21:441–447

    PubMed Central  PubMed  Google Scholar 

  • Sicouri S, Blazek J, Belardinelli L, Antzelevitch C (2012a) Electrophysiological characteristics of canine superior vena cava sleeve preparations. Effect of ranolazine. Circ Arrhythm Electrophysiol 5:371–379

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sicouri S, Pourrier M, Gibson JK, Lynch JJ, Antzelevitch C (2012b) Comparison of electrophysiological and antiarrhythmic effects of vernakalant, ranolazine, and sotalol in canine pulmonary vein sleeve preparations. Heart Rhythm 9:422–429

    PubMed Central  PubMed  Google Scholar 

  • Sicouri S, Blazek J, Belardinelli L, Antzelevitch C (2012c) Antiarrhythmic effects of the highly-selective late sodium channel current blocker GS 458967 in canine Purkinje fibers and pulmonary vein sleeve preparations. Heart Rhythm 9:S186, Abstract

    Google Scholar 

  • Sicouri S, Belardinelli L, Antzelevitch C (2013) Antiarrhythmic effects of the highly-selective late sodium channel current blocker GS-458967. Heart Rhythm 10(7):1036–1043

    PubMed  Google Scholar 

  • Sidorov VY, Uzelac I, Wikswo JP (2011) Regional increase of extracellular potassium leads to electrical instability and reentry occurrence through the spatial heterogeneity of APD restitution. Am J Physiol Heart Circ Physiol 301:H209–H220

    PubMed Central  PubMed  CAS  Google Scholar 

  • Song JH, Huang CS, Nagata K, Yeh JZ, Narahashi T (1997) Differential action of riluzole on tetrodotoxin-sensitive and tetrodotoxin-resistant sodium channels. J Pharmacol Exp Ther 282:707–714

    PubMed  CAS  Google Scholar 

  • Song Y, Shryock JC, Wu L, Belardinelli L (2004) Antagonism by ranolazine of the pro-arrhythmic effects of increasing late INa in guinea pig ventricular myocytes. J Cardiovasc Pharmacol 44:192–199

    PubMed  CAS  Google Scholar 

  • Song Y, Shryock J, Wagner S, Maier LS, Belardinelli L (2006) Blocking late sodium current reduces hydrogen peroxide-induced arrhythmogenic activity and contractile dysfunction. J Pharmacol Exp Ther 318:214–222

    PubMed  CAS  Google Scholar 

  • Song Y, Shryock JC, Belardinelli L (2008) An increase of late sodium current induces delayed afterdepolarizations and sustained triggered activity in atrial myocytes. Am J Physiol Heart Circ Physiol 294:H2031–H2039

    PubMed  CAS  Google Scholar 

  • Song Y, Shryock JC, Belardinelli L (2009) A slowly inactivating sodium current contributes to spontaneous diastolic depolarization of atrial myocytes. Am J Physiol Heart Circ Physiol 297:H1254–H1262

    PubMed  CAS  Google Scholar 

  • Sossalla S, Wagner S, Rasenack EC, Ruff H, Weber SL, Schondube FA, Tirilomis T, Tenderich G, Hasenfuss G, Belardinelli L, Maier LS (2008) Ranolazine improves diastolic dysfunction in isolated myocardium from failing human hearts–role of late sodium current and intracellular ion accumulation. J Mol Cell Cardiol 45:32–43

    PubMed  CAS  Google Scholar 

  • Sossalla S, Kallmeyer B, Wagner S, Mazur M, Maurer U, Toischer K, Schmitto JD, Seipelt R, Schondube FA, Hasenfuss G, Belardinelli L, Maier LS (2010) Altered Na+ currents in atrial fibrillation: effects of ranolazine on arrhythmias and contractility in human atrial myocardium. J Am Coll Cardiol 55:2330–2342

    PubMed  CAS  Google Scholar 

  • Sossalla S, Maurer U, Schotola H, Hartmann N, Didie M, Zimmermann WH, Jacobshagen C, Wagner S, Maier LS (2011) Diastolic dysfunction and arrhythmias caused by overexpression of CaMKIIdelta(C) can be reversed by inhibition of late Na(+) current. Basic Res Cardiol 106:263–272

    PubMed Central  PubMed  CAS  Google Scholar 

  • Spencer CI, Sham JS (2005) Mechanisms underlying the effects of the pyrethroid, tefluthrin, on action potential duration in isolated rat ventricular myocytes 1. J Pharmacol Exp Ther 315:16–23

    PubMed  CAS  Google Scholar 

  • Splawski I, Timothy KW, Tateyama M, Clancy CE, Malhotra A, Beggs AH, Cappuccio FP, Sagnella GA, Kass RS, Keating MT (2002) Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia. Science 297:1333–1336

    PubMed  CAS  Google Scholar 

  • Starmer CF, Nesterenko VV, Undrovinas AI, Grant AO, Rosenshtraukh LV (1991) Lidocaine blockade of continuously and transiently accessible sites in cardiac sodium channels. J Mol Cell Cardiol 23(Suppl I):73–83

    PubMed  CAS  Google Scholar 

  • Stern MD, Capogrossi MC, Lakatta EG (1988) Spontaneous calcium release from the sarcoplasmic reticulum in myocardial cells: mechanisms and consequences. Cell Calcium 9:247–256

    PubMed  CAS  Google Scholar 

  • Sunami A, Fan Z, Sawanobori T, Hiraoka M (1993) Use-dependent block of Na + currents by mexiletine at the single channel level in guinea-pig ventricular myocytes. Br J Pharmacol 110:183–192

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tamareille S, Le GB, John GW, Feuvray D, Coulombe A (2002) Anti-ischemic compound KC 12291 prevents diastolic contracture in isolated atria by blockade of voltage-gated sodium channels. J Cardiovasc Pharmacol 40:346–355

    PubMed  CAS  Google Scholar 

  • Tan BH, Pundi KN, Van Norstrand DW, Valdivia CR, Tester DJ, Medeiros-Domingo A, Makielski JC, Ackerman MJ (2010) Sudden infant death syndrome–associated mutations in the sodium channel beta subunits. Heart Rhythm 7:771–778

    PubMed Central  PubMed  Google Scholar 

  • Tang L, Joung B, Ogawa M, Chen PS, Lin SF (2012) Intracellular calcium dynamics, shortened action potential duration, and late-phase 3 early after depolarization in langendorff-perfused rabbit ventricles. J Cardiovasc Electrophysiol 23:1364–1371

    PubMed Central  PubMed  Google Scholar 

  • Trautwein W, Kassebaum DG, Nelson RM, HECHTHH (1962) Electrophysiological study of human heart muscle. Circ Res 10:306–312

    Google Scholar 

  • Tsuchida K, Otomo S (1990) Electrophysiological effects of Monensin, a sodium ionophore, on cardiac Purkinje fibers. Eur J Pharm 190:313–320

    CAS  Google Scholar 

  • Tweedie D, Harding SE, MacLeod KT (2000) Sarcoplasmic reticulum Ca content, sarcolemmal Ca influx and the genesis of arrhythmias in isolated guinea-pig cardiomyocytes. J Mol Cell Cardiol 32:261–272

    PubMed  CAS  Google Scholar 

  • Ueda N, Zipes DP, Wu J (2004) Prior ischemia enhances arrhythmogenicity in isolated canine ventricular wedge model of long QT 3. Cardiovasc Res 63:69–76

    PubMed  CAS  Google Scholar 

  • Ueda K, Valdivia C, Medeiros-Domingo A, Tester DJ, Vatta M, Farrugia G, Ackerman MJ, Makielski JC (2008) Syntrophin mutation associated with long QT syndrome through activation of the nNOS-SCN5A macromolecular complex. Proc Natl Acad Sci U S A 105:9355–9360

    PubMed Central  PubMed  CAS  Google Scholar 

  • Undrovinas A, Maltsev VA (2008a) Late sodium current is a new therapeutic target to improve contractility and rhythm in failing heart. Cardiovasc Hematol Agents Med Chem 6:348–359

    PubMed Central  PubMed  CAS  Google Scholar 

  • Undrovinas A, Maltsev VA (2008b) Late sodium current is a new therapeutic target to improve contractility and rhythm in failing heart. Cardiovasc Hematol Agents Med Chem 6:348–359

    PubMed Central  PubMed  CAS  Google Scholar 

  • Undrovinas AI, Fleidervish IA, Makielski JC (1992) Inward sodium current at resting potentials in single cardiac myocytes induced by the ischemic metabolite lysophosphatidylcholine. Circ Res 71:1231–1241

    PubMed  CAS  Google Scholar 

  • Undrovinas AI, Maltsev VA, Sabbah HN (1999) Repolarization abnormalities in cardiomyocytes of dogs with chronic heart failure: role of sustained inward current. Cell Mol Life Sci 55:494–505

    PubMed  CAS  Google Scholar 

  • Undrovinas AI, Maltsev VA, Kyle JW, Silverman N, Sabbah HN (2002) Gating of the late Na+ channel in normal and failing human myocardium. J Mol Cell Cardiol 34:1477–1489

    PubMed  CAS  Google Scholar 

  • Undrovinas AI, Undrovinas NA, Belardinelli L, Sabbah HN (2004) Ranolazine inhibits late sodium current in isolated left ventricular myocytes of dogs with heart failure. J Am Coll Cardiol 43(supplA):178A, Abstract

    Google Scholar 

  • Undrovinas AI, Belardinelli L, Undrovinas NA, Sabbah HN (2006) Ranolazine improves abnormal repolarization and contraction in left ventricular myocytes of dogs with heart failure by inhibiting late sodium current. J Cardiovasc Electrophysiol 17:S161–S177

    Google Scholar 

  • Undrovinas NA, Maltsev VA, Belardinelli L, Sabbah HN, Undrovinas A (2010) Late sodium current contributes to diastolic cell Ca2+ accumulation in chronic heart failure. J Physiol Sci 60:245–257

    PubMed Central  PubMed  CAS  Google Scholar 

  • Vacher B, Pignier C, Letienne R, Verscheure Y, Le GB (2009) F 15845 inhibits persistent sodium current in the heart and prevents angina in animal models. Br J Pharmacol 156:214–225

    PubMed Central  PubMed  CAS  Google Scholar 

  • Valdivia CR, Chu WW, Pu J, Foell JD, Haworth RA, Wolff MR, Kamp TJ, Makielski JC (2005) Increased late sodium current in myocytes from a canine heart failure model and from failing human heart. J Mol Cell Cardiol 38:475–483

    PubMed  CAS  Google Scholar 

  • Vatta M, Faulkner G (2006) Cytoskeletal basis of ion channel function in cardiac muscle. Future Cardiol 2:467–476

    PubMed Central  PubMed  CAS  Google Scholar 

  • Vatta M, Ackerman MJ, Ye B, Makielski JC, Ughanze EE, Taylor EW, Tester DJ, Balijepalli RC, Foell JD, Li Z, Kamp TJ, Towbin JA (2006) Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome. Circulation 114:2104–2112

    PubMed  CAS  Google Scholar 

  • Verdonck F, Bielen FV, Ver DL (1991) Preferential block of the veratridine-induced, non-inactivating Na + current by R56865 in single cardiac Purkinje cells. Eur J Pharmacol 203:371–378

    PubMed  CAS  Google Scholar 

  • Vermeulen JT, Tan HL, Rademaker H, Schumacher CA, Loh P, Opthof T, Coronel R, Janse MJ (1996) Electrophysiologic and extracellular ionic changes during acute ischemia in failing and normal rabbit myocardium. J Mol Cell Cardiol 28:123–131

    PubMed  CAS  Google Scholar 

  • Vollmer B, Meuter C, Janssen PA (1987) R 56865 prevents electrical and mechanical signs of ouabain intoxication in guinea-pig papillary muscle. Eur J Pharmacol 142:137–140

    PubMed  CAS  Google Scholar 

  • Wagner S, Dybkova N, Rasenack EC, Jacobshagen C, Fabritz L, Kirchhof P, Maier SK, Zhang T, Hasenfuss G, Brown JH, Bers DM, Maier LS (2006) Ca2+/calmodulin-dependent protein kinase II regulates cardiac Na+ channels. J Clin Invest 116:3127–3138

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wagner S, Ruff HM, Weber SL, Bellmann S, Sowa T, Schulte T, Anderson ME, Grandi E, Bers DM, Backs J, Belardinelli L, Maier LS (2011) Reactive oxygen species-activated Ca/calmodulin kinase IIdelta is required for late I(Na) augmentation leading to cellular Na and Ca overload. Circ Res 108:555–565

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wang Q, Shen J, Li Z, Timothy KW, Vincent GM, Priori SG, Schwartz PJ, Keating MT (1995) Cardiac sodium channel mutations in patients with long QT syndrome, an inherited cardiac arrhythmia. Hum Mol Genet 4:1603–1607

    PubMed  CAS  Google Scholar 

  • Wang DW, Yazawa K, George AL Jr, Bennett PB (1996) Characterization of human cardiac Na+ channel mutations in the congenital long QT syndrome. Proc Natl Acad Sci U S A 93:13200–13205

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wang DW, Crotti L, Shimizu W, Pedrazzini M, Ikeda T, Schwartz PJ, George AL (2008) Malignant perinatal variant of long-QT syndrome caused by a profoundly dysfunctional cardiac sodium channel. Circ Arrhythm Electrophysiol 1:370–378

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wang DW, Mistry AM, Kahlig KM, Kearney JA, Xiang J, George AL Jr (2010) Propranolol blocks cardiac and neuronal voltage-gated sodium channels. Front Pharmacol 1:144

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ward CA, Giles WR (1997) Ionic mechanism of the effects of hydrogen peroxide in rat ventricular myocytes. J Physiol 500(Pt 3):631–642

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ward CA, Bazzazi H, Clark RB, Nygren A, Giles WR (2006) Actions of emigrated neutrophils on Na(+) and K(+) currents in rat ventricular myocytes. Prog Biophys Mol Biol 90:249–269

    PubMed  CAS  Google Scholar 

  • Weiss S, Benoist D, White E, Teng W, Saint DA (2010) Riluzole protects against cardiac ischaemia and reperfusion damage via block of the persistent sodium current. Br J Pharmacol 160:1072–1082

    PubMed Central  PubMed  CAS  Google Scholar 

  • West JW, Patton DE, Scheuer T (1992) A cluster of hydrophobic amino acid residues required for fast Na+ channel inactivation. Proc Natl Acad Sci U S A 89:10910–10914

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wilhelm D, Himmel H, Ravens U, Peters T (1991) Characterization of the interaction of R 56865 with cardiac Na- and L-type Ca channels. Br J Pharmacol 104:483–489

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wilson LD, Jeyaraj D, Wan X, Hoeker GS, Said TH, Gittinger M, Laurita KR, Rosenbaum DS (2009) Heart failure enhances susceptibility to arrhythmogenic cardiac alternans. Heart Rhythm 6:251–259

    PubMed Central  PubMed  Google Scholar 

  • Wit AL, Cranefield PF (1977) Triggered and automatic activity in the canine coronary sinus. Circ Res 41:435–445

    Google Scholar 

  • Wit AL, Rosen MR (1983) Pathophysiologic mechanisms of cardiac arrhythmias. Am Heart J 106:798–811

    PubMed  CAS  Google Scholar 

  • Witchel HJ, Dempsey CE, Sessions RB, Perry M, Milnes JT, Hancox JC, Mitcheson JS (2004) The low-potency, voltage-dependent HERG blocker propafenone–molecular determinants and drug trapping. Mol Pharmacol 66:1201–1212

    PubMed  CAS  Google Scholar 

  • Wu J, Corr PB (1995) Palmitoylcarnitine increases [Na+]i and initiates transient inward current in adult ventricular myocytes. Am J Physiol 268:H2405–H2417

    PubMed  CAS  Google Scholar 

  • Wu L, Song Y, Shryock JC, Li Y, Antzelevitch C, Belardinelli L (2003) Ranolazine attenuates the prolongation of ventricular monophasic action potential and suppresses ventricular tachycardia caused by sea anemone toxin, ATX-II, in guinea pig isolated hearts. PACE 26:1023, Abstract

    Google Scholar 

  • Wu L, Shryock JC, Song Y, Li Y, Antzelevitch C, Belardinelli L (2004) Antiarrhythmic effects of ranolazine in a guinea pig in vitro model of long-QT syndrome. J Pharmacol Exp Ther 310:599–605

    PubMed  CAS  Google Scholar 

  • Wu L, Shryock JC, Song Y, Belardinelli L (2006) An increase in late sodium current potentiates the proarrhythmic activities of low-risk QT-prolonging drugs in female rabbit hearts. J Pharmacol Exp Ther 316:718–726

    PubMed  CAS  Google Scholar 

  • Wu G, Ai T, Kim JJ, Mohapatra B, Xi Y, Li Z, Abbasi S, Purevjav E, Samani K, Ackerman MJ, Qi M, Moss AJ, Shimizu W, Towbin JA, Cheng J, Vatta M (2008a) a-1-syntrophin mutation and the long-QT syndrome: a disease of sodium channel disruption. Circ Arrhythm Electrophysiol 1:193–201

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wu L, Guo D, Li H, Hackett J, Yan GX, Jiao Z, Antzelevitch C, Shryock JC, Belardinelli L (2008b) Role of late sodium current in modulating the proarrhythmic and antiarrhythmic effects of quinidine. Heart Rhythm 5:1726–1734

    PubMed Central  PubMed  Google Scholar 

  • Wu L, Rajamani S, Shryock JC, Li H, Ruskin J, Antzelevitch C, Belardinelli L (2008c) Augmentation of late sodium current unmasks the proarrhythmic effects of amiodarone. Cardiovasc Res 77:481–488

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wu Y, Song Y, Belardinelli L, Shryock JC (2009a) The late Na+ current (INa) inhibitor ranolazine attenuates effects of Palmitoyl-L-Carnitine to increase late INa and cause ventricular diastolic dysfunction. J Pharmacol Exp Ther 330:550–557

    PubMed  CAS  Google Scholar 

  • Wu L, Rajamani S, Li H, January CT, Shryock JC, Belardinelli L (2009b) Reduction of repolarization researve unmasks the pro-arrhythmic role of endogenous late sodium current in the heart. Am J Physiol Heart Circ Physiol 297:H1048–H1057

    PubMed  CAS  Google Scholar 

  • Wu L, Ma J, Li H, Wang C, Grandi E, Zhang P, Luo A, Bers DM, Shryock JC, Belardinelli L (2011) Late sodium current contributes to the reverse rate-dependent effect of IKr inhibition on ventricular repolarization. Circulation 123:1713–1720

    PubMed  CAS  Google Scholar 

  • Xiao XH, Allen DG (1999) Role of Na(+)/H(+) exchanger during ischemia and preconditioning in the isolated rat heart. Circ Res 85:723–730

    PubMed  CAS  Google Scholar 

  • Xie LH, Chen F, Karagueuzian HS, Weiss JN (2009) Oxidative-stress-induced after depolarizations and calmodulin kinase II signaling. Circ Res 104:79–86

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yan GX, Wu Y, Liu T, Wang J, Marinchak RA, Kowey PR (2001) Phase 2 early afterdepolarization as a trigger of polymorphic ventricular tachycardia in acquired long-qt syndrome: direct evidence from intracellular recordings in the intact left ventricular wall. Circulation 103:2851–2856

    PubMed  CAS  Google Scholar 

  • Yao L, Fan P, Jiang Z, Viatchenko-Karpinski S, Wu Y, Kornyeyev D, Hirakawa R, Budas GR, Rajamani S, Shryock JC, Belardinelli L (2011) Nav1.5-dependent persistent Na+ influx activates CaMKII in rat ventricular myocytes and N1325S mice. Am J Physiol Cell Physiol 301:C577–C586

    PubMed  CAS  Google Scholar 

  • Yatani A, Akaike N (1985) Blockage of the sodium current in isolated single cells from rat ventricle with mexiletine and disopyramide. J Mol Cell Cardiol 17:467–476

    PubMed  CAS  Google Scholar 

  • Zaza A, Belardinelli L, Shryock JC (2008) Pathophysiology and pharmacology of the cardiac “late sodium current”. Pharmacol Ther 119:326–339

    PubMed  CAS  Google Scholar 

  • Zeiler RH, Gough WB, El-Sherif N (1984) Electrophysiologic effects of propafenone on canine ischemic cardiac cells. Am J Cardiol 54:424–429

    PubMed  CAS  Google Scholar 

  • Zellerhoff S, Pistulli R, Monnig G, Hinterseer M, Beckmann BM, Kobe J, Steinbeck G, Kaab S, Haverkamp W, Fabritz L, Gradaus R, Breithardt G, Schulze-Bahr E, Bocker D, Kirchhof P (2009) Atrial arrhythmias in long-QT syndrome under daily life conditions: a nested case control study. J Cardiovasc Electrophysiol 20:401–407

    PubMed  Google Scholar 

  • Zhang T, Kohlhaas M, Backs J, Mishra S, Phillips W, Dybkova N, Chang S, Ling H, Bers DM, Maier LS, Olson EN, Brown JH (2007) CaMKIIdelta isoforms differentially affect calcium handling but similarly regulate HDAC/MEF2 transcriptional responses. J Biol Chem 282:35078–35087

    PubMed  CAS  Google Scholar 

  • Zhang XQ, Yamada S, Barry WH (2008) Ranolazine inhibits an oxidative stress-induced increase in myocyte sodium and calcium loading during simulated-demand ischemia. J Cardiovasc Pharmacol 51:443–449

    PubMed  CAS  Google Scholar 

  • Zhang T, Yong SL, Drinko JK, Popovic ZB, Shryock JC, Belardinelli L, Wang QK (2011) LQTS mutation N1325S in cardiac sodium channel gene SCN5A causes cardiomyocyte apoptosis, cardiac fibrosis and contractile dysfunction in mice. Int J Cardiol 147:239–245

    PubMed Central  PubMed  Google Scholar 

  • Zhao G, Walsh E, Shryock JC, Messina E, Wu Y, Zeng D, Xu X, Ochoa M, Baker SP, Hintze TH, Belardinelli L (2011) Antiadrenergic and hemodynamic effects of ranolazine in conscious dogs. J Cardiovasc Pharmacol 57:639–647

    PubMed  CAS  Google Scholar 

  • Zicha S, Maltsev VA, Nattel S, Sabbah HN, Undrovinas AI (2004) Post-transcriptional alterations in the expression of cardiac Na+ channel subunits in chronic heart failure1. J Mol Cell Cardiol 37:91–100

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zimmer T, Surber R (2008) SCN5A channelopathies - an update on mutations and mechanisms. Prog Biophys Mol Biol 98:120–136

    PubMed  CAS  Google Scholar 

  • Zygmunt AC, Eddlestone GT, Thomas GP, Nesterenko VV, Antzelevitch C (2001) Larger late sodium conductance in M cells contributes to electrical heterogeneity in canine ventricle. Am J Physiol 281:H689–H697

    CAS  Google Scholar 

  • Zygmunt AC, Nesterenko VV, Rajamani S, Hu D, Barajas-Martinez H, Belardinelli L, Antzelevitch C (2011) Mechanisms of atrial-selective block of sodium channel by ranolazine I. Experimental analysis of the use-dependent block. Am J Physiol Heart Circ Physiol 301:H1606–H1614

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Support

Supported by grants HL47678 from NHLBI, NIH (CA), C026424 from NYSTEM (CA), Gilead Sciences, Inc. and the Masons of New York State, Florida, Massachusetts Connecticut, Maryland, Rhode Island, and Wisconsin.

Conflicts of Interest

Dr. Antzelevitch is a consultant to Gilead Sciences and Dr. Belardinelli, Shryock, and Rajamani are employed by Gilead Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Antzelevitch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Antzelevitch, C., Nesterenko, V., Shryock, J.C., Rajamani, S., Song, Y., Belardinelli, L. (2014). The Role of Late I Na in Development of Cardiac Arrhythmias. In: Ruben, P. (eds) Voltage Gated Sodium Channels. Handbook of Experimental Pharmacology, vol 221. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41588-3_7

Download citation

Publish with us

Policies and ethics