Skip to main content

Phosphodiesterase Inhibitors in the Treatment of Inflammatory Diseases

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 204))

Abstract

Phosphodiesterase 4 (PDE4) belongs to a family of enzymes which catalyzes the breakdown of 3, 5′-adenosine cyclic monophosphate (cAMP) and is ubiquitously expressed in inflammatory cells. There is little evidence that inflammatory diseases are caused by increased expression of this isoenzyme, although human inflammatory cell activity can be suppressed by selective PDE4 inhibitors. Consequently, there is intense interest in the development of selective PDE4 inhibitors for the treatment of a range of inflammatory diseases, including asthma, chronic obstructive pulmonary disease (COPD), inflammatory bowel disease, and psoriasis. Recent clinical trials with roflumilast in COPD have confirmed the therapeutic potential of targeting PDE4 and recently roflumilast has been approved for marketing in Europe and the USA, although side effects such as gastrointestinal disturbances, particularly nausea and emesis as well as headache and weight loss, may limit the use of this drug class, at least when administered by the oral route. However, a number of strategies are currently being pursued in attempts to improve clinical efficacy and reduce side effects of PDE4 inhibitors, including delivery via the inhaled route, development of nonemetic PDE4 inhibitors, mixed PDE inhibitors, and/or antisense biologicals targeted toward PDE4.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

COPD:

Chronic obstructive pulmonary disease

PDE:

Phosphodiesterase

References

  • Abraham C, Cho JH (2009) Inflammatory bowel disease. N Engl J Med 361:2066–2078

    PubMed  CAS  Google Scholar 

  • Akama T, Baker SJ, Zhang YK, Hernandez V, Zhou H, Sanders V, Freund Y, Kimura R, Maples KR, Plattner JJ (2009) Discovery and structure-activity study of a novel benzoxaborole anti-inflammatory agent (AN2728) for the potential topical treatment of psoriasis and atopic dermatitis. Bioorg Med Chem Lett 19:2129–2132

    PubMed  CAS  Google Scholar 

  • Aoki M, Kobayashi M, Ishikawa J, Saita Y, Terai Y, Takayama K, Miyata K, Yamada T (2000) A novel phosphodiesterase type 4 inhibitor, YM976 (4-(3-chlorophenyl)-1, 7-diethylpyrido[2, 3-d]pyrimidin-2(1H)-one), with little emetogenic activity. J Pharmacol Exp Ther 295:255–260

    PubMed  CAS  Google Scholar 

  • Aoki M, Fukunaga M, Sugimoto T, Hirano Y, Kobayashi M, Honda K, Yamada T (2001) Studies on mechanisms of low emetogenicity of YM976, a novel phosphodiesterase type 4 inhibitor. J Pharmacol Exp Ther 298:1142–1149

    PubMed  CAS  Google Scholar 

  • Ariga M, Neitzert B, Nakae S, Mottin G, Bertrand C, Pruniaux MP, Jin SL, Conti M (2004) Nonredundant function of phosphodiesterases 4D and 4B in neutrophil recruitment to the site of inflammation. J Immunol 173:7531–7538

    PubMed  CAS  Google Scholar 

  • Banner KH, Press NJ (2009) Dual PDE3/4 inhibitors as therapeutic agents for chronic obstructive pulmonary disease. Br J Pharmacol 157:892–906

    PubMed  CAS  Google Scholar 

  • Barber R, Baillie GS, Bergmann R, Shepherd MC, Sepper R, Houslay MD, Heeke GV (2004) Differential expression of PDE4 cAMP phosphodiesterase isoforms in inflammatory cells of smokers with COPD, smokers without COPD, and nonsmokers. Am J Physiol Lung Cell Mol Physiol 287:L332–L343

    PubMed  CAS  Google Scholar 

  • Barnes PJ (2008) The cytokine network in asthma and chronic obstructive pulmonary disease. J Clin Invest 118:3546–3556

    PubMed  CAS  Google Scholar 

  • Barnes PJ, Adcock IM, Ito K (2005) Histone acetylation and deacetylation: importance in inflammatory lung diseases. Eur Respir J 25:552–563

    PubMed  CAS  Google Scholar 

  • Baumer W, Hoppmann J, Rundfeldt C, Kietzmann M (2007) Highly selective phosphodiesterase 4 inhibitors for the treatment of allergic skin diseases and psoriasis. Inflamm Allergy Drug Targets 6:17–26

    PubMed  Google Scholar 

  • Boolell M, Gepi-Attee S, Gingell JC, Allen MJ (1996) Sildenafil, a novel effective oral therapy for male erectile dysfunction. Br J Urol 78:257–261

    PubMed  CAS  Google Scholar 

  • Boswell-Smith V, Spina D, Oxford AW, Comer MB, Seeds EA, Page CP (2006a) The pharmacology of two novel long-acting phosphodiesterase 3/4 inhibitors, RPL554 [9, 10-dimethoxy-2(2, 4, 6-trimethylphenylimino)-3-(n-carbamoyl-2-aminoethyl) -3, 4, 6, 7-tetrahydro-2H-pyrimido[6, 1-a]isoquinolin-4-one] and RPL565 [6, 7-dihydro-2-(2, 6-diisopropylphenoxy)-9, 10-dimethoxy-4H-pyrimido[6, 1-a]i soquinolin-4-one]. J Pharmacol Exp Ther 318:840–848

    PubMed  CAS  Google Scholar 

  • Boswell-Smith V, Spina D, Page CP (2006b) Phosphodiesterase inhibitors. Br J Pharmacol 147(Suppl 1):S252–S257

    PubMed  CAS  Google Scholar 

  • Bousquet J, Aubier M, Sastre J, Izquierdo JL, Adler LM, Hofbauer P, Rost KD, Harnest U, Kroemer B, Albrecht A, Bredenbroker D (2006) Comparison of roflumilast, an oral anti-inflammatory, with beclomethasone dipropionate in the treatment of persistent asthma. Allergy 61:72–78

    PubMed  CAS  Google Scholar 

  • Brunnee T, Engelstatter R, Steinijans VW, Kunkel G (1992) Bronchodilatory effect of inhaled zardaverine, a phosphodiesterase III and IV inhibitor, in patients with asthma. Eur Respir J 5:982–985

    PubMed  CAS  Google Scholar 

  • Bundschuh DS, Eltze M, Barsig J, Wollin L, Hatzelmann A, Beume R (2001) In vivo efficacy in airway disease models of roflumilast, a novel orally active PDE4 inhibitor. J Pharmacol Exp Ther 297:280–290

    PubMed  CAS  Google Scholar 

  • Bureau Y, Handa M, Zhu Y, Laliberte F, Moore CS, Liu S, Huang Z, Macdonald D, Xu DG, Robertson GS (2006) Neuroanatomical and pharmacological assessment of Fos expression induced in the rat brain by the phosphodiesterase-4 inhibitor 6-(4-pyridylmethyl)-8-(3-nitrophenyl) quinoline. Neuropharmacology 51:974–985

    PubMed  CAS  Google Scholar 

  • Burgin AB, Magnusson OT, Singh J, Witte P, Staker BL, Bjornsson JM, Thorsteinsdottir M, Hrafnsdottir S, Hagen T, Kiselyov AS, Stewart LJ, Gurney ME (2010) Design of phosphodiesterase 4D (PDE4D) allosteric modulators for enhancing cognition with improved safety. Nat Biotechnol 28:63–70

    PubMed  CAS  Google Scholar 

  • Butcher RW, Sutherland EW (1962) Adenosine 3′, 5′-phosphate in biological materials. I. Purification and properties of cyclic 3′, 5′-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3′, 5′-phosphate in human urine. J Biol Chem 237:1244–1250

    PubMed  CAS  Google Scholar 

  • Calverley PM, Sanchez-Toril F, McIvor A, Teichmann P, Bredenbroeker D, Fabbri LM (2007) Effect of 1-year treatment with roflumilast in severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med 176:154–161

    PubMed  CAS  Google Scholar 

  • Calverley PM, Rabe KF, Goehring UM, Kristiansen S, Fabbri LM, Martinez FJ (2009) Roflumilast in symptomatic chronic obstructive pulmonary disease: two randomised clinical trials. Lancet 374:685–694

    PubMed  CAS  Google Scholar 

  • Card GL, England BP, Suzuki Y, Fong D, Powell B, Lee B, Luu C, Tabrizizad M, Gillette S, Ibrahim PN, Artis DR, Bollag G, Milburn MV, Kim SH, Schlessinger J, Zhang KY (2004) Structural basis for the activity of drugs that inhibit phosphodiesterases. Structure 12:2233–2247

    PubMed  CAS  Google Scholar 

  • Carpenter DO, Briggs DB, Knox AP, Strominger N (1988) Excitation of area postrema neurones by transmitters, peptides and cyclic nucleotides. J Neurophysiol 59:358–369

    PubMed  CAS  Google Scholar 

  • Chan SC, Reifsnyder D, Beavo JA, Hanifin JM (1993) Immunochemical characterization of the distinct monocyte cyclic AMP-phosphodiesterase from patients with atopic dermatitis. J Allergy Clin Immunol 91:1179–1188

    PubMed  CAS  Google Scholar 

  • Cherry JA, Davis RL (1999) Cyclic AMP phosphodiesterases are localized in regions of the mouse brain associated with reinforcement, movement and affect. J Comp Neurol 407:287–301

    PubMed  CAS  Google Scholar 

  • Conti M, Beavo J (2007) Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 76:481–511

    PubMed  CAS  Google Scholar 

  • David M, Zech K, Seiberling M, Weimar C, Roflumilast BTD (2004) a novel, oral, selective PDE4 inhibitor, shows high absolute bioavailability. J Allergy Clin Immunol 113:S220–S221, Ref Type: Abstract

    Google Scholar 

  • Dunkern TR, Feurstein D, Rossi GA, Sabatini F, Hatzelmann A (2007) Inhibition of TGF-beta induced lung fibroblast to myofibroblast conversion by phosphodiesterase inhibiting drugs and activators of soluble guanylyl cyclase. Eur J Pharmacol 572:12–22

    PubMed  CAS  Google Scholar 

  • Essayan DM, Kagey-Sobotka A, Lichtenstein LM, Huang S-K (1997) Differential regulation of human antigen-specific Th1 and Th2 lymphocyte responses by isozyme selective cyclic nucleotide phosphodiesterase inhibitors. J Pharmacol Exp Ther 282:505–512

    PubMed  CAS  Google Scholar 

  • Fabbri LM, Calverley PM, Izquierdo-Alonso JL, Bundschuh DS, Brose M, Martinez FJ, Rabe KF (2009) Roflumilast in moderate-to-severe chronic obstructive pulmonary disease treated with longacting bronchodilators: two randomised clinical trials. Lancet 374:695–703

    PubMed  CAS  Google Scholar 

  • Fortin M, D’Anjou H, Higgins ME, Gougeon J, Aube P, Moktefi K, Mouissi S, Seguin S, Seguin R, Renzi PM, Paquet L, Ferrari N (2009) A multi-target antisense approach against PDE4 and PDE7 reduces smoke-induced lung inflammation in mice. Respir Res 10:39

    PubMed  Google Scholar 

  • Fuhrmann M, Jahn H-U, Seybold J, Neurohr C, Barnes PJ, Hippenstiel S, Kraemer HJ, Suttorp N (1999) Identification and function of cyclic nucleotide phosphodiesterase isoenzymes in airway epithelial cells. Am J Respir Cell Mol Biol 20:292–302

    PubMed  CAS  Google Scholar 

  • Gale DD, Landells LJ, Spina D, Miller AJ, Smith K, Nichols T, Rotshteyn Y, Tonelli A, Lacouture P, Burch RM, Page CP, O’Connor BJ (2002) Pharmacokinetic and pharmacodynamic profile following oral administration of the phosphodiesterase (PDE)4 inhibitor V11294A in healthy volunteers. Br J Clin Pharmacol 54:478–484

    PubMed  CAS  Google Scholar 

  • Gamble E, Grootendorst DC, Brightling CE, Troy S, Qiu Y, Zhu J, Parker D, Matin D, Majumdar S, Vignola AM, Kroegel C, Morell F, Hansel TT, Rennard SI, Compton C, Amit O, Tat T, Edelson J, Pavord ID, Rabe KF, Barnes NC, Jeffery PK (2003) Antiinflammatory effects of the phosphodiesterase-4 inhibitor cilomilast (Ariflo) in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 168:976–982

    PubMed  Google Scholar 

  • Gantner F, Kupferschmidt R, Schudt C, Wendel A, Hatzelmann A (1997a) In vitro differentiation of human monocytes to macrophages: Change of PDE profile and its relationship to suppression of tumour necrosis factor-alpha release by PDE inhibitors. Br J Pharmacol 121:221–231

    PubMed  CAS  Google Scholar 

  • Gantner F, Tenor H, Gekeler V, Schudt C, Wendel A, Hatzelmann A (1997b) Phosphodiesterase profiles of highly purified human peripheral blood leukocyte populations from normal and atopic individuals: a comparative study. J Allergy Clin Immunol 100:527–535

    PubMed  CAS  Google Scholar 

  • Gantner F, Gotz C, Gekeler V, Schudt C, Wendel A, Hatzelmann A (1998) Phosphodiesterase profile of human B lymphocytes from normal and atopic donors and the effects of PDE inhibition on B cell proliferation. Br J Pharmacol 123:1031–1038

    PubMed  CAS  Google Scholar 

  • Gottlieb AB, Strober B, Krueger JG, Rohane P, Zeldis JB, Hu CC, Kipnis C (2008) An open-label, single-arm pilot study in patients with severe plaque-type psoriasis treated with an oral anti-inflammatory agent, apremilast. Curr Med Res Opin 24:1529–1538

    PubMed  CAS  Google Scholar 

  • Grootendorst DC, Gauw SA, Verhoosel RM, Sterk PJ, Hospers JJ, Bredenbroker D, Bethke TD, Hiemstra PS, Rabe KF (2007) Reduction in sputum neutrophil and eosinophil numbers by the PDE4 inhibitor roflumilast in patients with COPD. Thorax 62:1081–1087

    PubMed  Google Scholar 

  • Gross PM, Wall KM, Pang JJ, Shaver SW, Wainman DS (1990) Microvascular specializations promoting rapid interstitial solute dispersion in nucleus tractus solitarius. Am J Physiol 259:R1131–R1138

    PubMed  CAS  Google Scholar 

  • Haddad JJ, Land SC, Tarnow-Mordi WO, Zembala M, Kowalczyk D, Lauterbach R (2002) Immunopharmacological potential of selective phosphodiesterase inhibition. I. Differential regulation of lipopolysaccharide-mediated proinflammatory cytokine (interleukin-6 and tumor necrosis factor-alpha) biosynthesis in alveolar epithelial cells. J Pharmacol Exp Ther 300:559–566

    PubMed  CAS  Google Scholar 

  • Hansen G, Jin S, Umetsu DT, Conti M (2000) Absence of muscarinic cholinergic airway responses in mice deficient in the cyclic nucleotide phosphodiesterase PDE4D. Proc Natl Acad Sci USA 97:6751–6756

    PubMed  CAS  Google Scholar 

  • Harbinson PL, MacLeod D, Hawksworth R, O’Toole S, Sullivan PJ, Heath P, Kilfeather S, Page CP, Costello J, Holgate ST, Lee TH (1997) The effect of a novel orally active selective PDE4 isoenzyme inhibitor (CDP840) on allergen-induced responses in asthmatic subjects. Eur Respir J 10:1008–1014

    PubMed  CAS  Google Scholar 

  • Hatzelmann A, Schudt C (2001) Anti-inflammatory and immunomodulatory potential of the novel PDE4 inhibitor roflumilast in vitro. J Pharmacol Exp Ther 297:267–279

    PubMed  CAS  Google Scholar 

  • Heystek HC, Thierry AC, Soulard P, Moulon C (2003) Phosphodiesterase 4 inhibitors reduce human dendritic cell inflammatory cytokine production and Th1-polarizing capacity. Int Immunol 15:827–835

    PubMed  CAS  Google Scholar 

  • Himes BE, Hunninghake GM, Baurley JW, Rafaels NM, Sleiman P, Strachan DP, Wilk JB, Willis-Owen SA, Klanderman B, Lasky-Su J, Lazarus R, Murphy AJ, Soto-Quiros ME, Avila L, Beaty T, Mathias RA, Ruczinski I, Barnes KC, Celedon JC, Cookson WO, Gauderman WJ, Gilliland FD, Hakonarson H, Lange C, Moffatt MF, O’Connor GT, Raby BA, Silverman EK, Weiss ST (2009) Genome-wide association analysis identifies PDE4D as an asthma-susceptibility gene. Am J Hum Genet 84:581–593

    PubMed  CAS  Google Scholar 

  • Homma S, Sakamoto T, Hegab AE, Saitoh W, Nomura A, Ishii Y, Morishima Y, Iizuka T, Kiwamoto T, Matsuno Y, Massoud HH, Massoud HM, Hassanein KM, Sekizawa K (2006) Association of phosphodiesterase 4D gene polymorphisms with chronic obstructive pulmonary disease: relationship to interleukin 13 gene polymorphism. Int J Mol Med 18:933–939

    PubMed  CAS  Google Scholar 

  • Houslay MD (2010) Underpinning compartmentalised cAMP signalling through targeted cAMP breakdown. Trends Biochem Sci 35:91–100

    PubMed  CAS  Google Scholar 

  • Houslay MD, Schafer P, Zhang KY (2005) Keynote review: phosphodiesterase-4 as a therapeutic target. Drug Discov Today 10:1503–1519

    PubMed  CAS  Google Scholar 

  • Houslay MD, Baillie GS, Maurice DH (2007) cAMP-Specific phosphodiesterase-4 enzymes in the cardiovascular system: a molecular toolbox for generating compartmentalized cAMP signaling. Circ Res 100:950–966

    PubMed  CAS  Google Scholar 

  • Huston E, Lynch MJ, Mohamed A, Collins DM, Hill EV, MacLeod R, Krause E, Baillie GS, Houslay MD (2008) EPAC and PKA allow cAMP dual control over DNA-PK nuclear translocation. Proc Natl Acad Sci USA 105:12791–12796

    PubMed  CAS  Google Scholar 

  • Ichikawa H, Okamoto S, Kamada N, Nagamoto H, Kitazume MT, Kobayashi T, Chinen H, Hisamatsu T, Hibi T (2008) Tetomilast suppressed production of proinflammatory cytokines from human monocytes and ameliorated chronic colitis in IL-10-deficient mice. Inflamm Bowel Dis 14:1483–1490

    PubMed  Google Scholar 

  • Jin SL, Conti M (2002) Induction of the cyclic nucleotide phosphodiesterase PDE4B is essential for LPS-activated TNF-alpha responses. Proc Natl Acad Sci USA 99:7628–7633

    PubMed  CAS  Google Scholar 

  • Jin SL, Richard FJ, Kuo WP, D’Ercole AJ, Conti M (1999) Impaired growth and fertility of cAMP-specific phosphodiesterase PDE4D-deficient mice. Proc Natl Acad Sci USA 96:11998–12003

    PubMed  CAS  Google Scholar 

  • Jones NA, Boswell-Smith V, Lever R, Page CP (2005) The effect of selective phosphodiesterase isoenzyme inhibition on neutrophil function in vitro. Pulm Pharmacol Ther 18:93–101

    PubMed  CAS  Google Scholar 

  • Jones NA, Leport M, Holand T, Vos T, Morgan M, Fink M, Pruniaux MP, Berthelier C, O’Connor BJ, Bertrand C, Page CP (2007) Phosphodiesterase (PDE) 7 in inflammatory cells from patients with asthma and COPD. Pulm Pharmacol Ther 20:60–68

    PubMed  CAS  Google Scholar 

  • Kanehiro A, Ikemura T, Makela MJ, Lahn M, Joetham A, Dakhama A, Gelfand EW (2001) Inhibition of phosphodiesterase 4 attenuates airway hyperresponsiveness and airway inflammation in a model of secondary allergen challenge. Am J Respir Crit Care Med 163:173–184

    PubMed  CAS  Google Scholar 

  • Keshavarzian A, Mutlu E, Guzman JP, Forsyth C, Banan A (2007) Phosphodiesterase 4 inhibitors and inflammatory bowel disease: emerging therapies in inflammatory bowel disease. Expert Opin Investig Drugs 16:1489–1506

    PubMed  CAS  Google Scholar 

  • Kobayashi K, Suda T, Manabe H, Miki I (2007) Administration of PDE4 inhibitors suppressed the pannus-like inflammation by inhibition of cytokine production by macrophages and synovial fibroblast proliferation. Mediat Inflamm 2007:58901

    Google Scholar 

  • Kohyama T, Liu X, Zhu YK, Wen FQ, Wang HJ, Fang Q, Kobayashi T, Rennard SI (2002) Phosphodiesterase 4 inhibitor cilomilast inhibits fibroblast-mediated collagen gel degradation induced by tumor necrosis factor-alpha and neutrophil elastase. Am J Respir Cell Mol Biol 27:487–494

    PubMed  CAS  Google Scholar 

  • Kranz M, Wall M, Evans B, Miah A, Ballantine S, Delves C, Dombroski B, Gross J, Schneck J, Villa JP, Neu M, Somers DO (2009) Identification of PDE4B Over 4D subtype-selective inhibitors revealing an unprecedented binding mode. Bioorg Med Chem 17:5336–5341

    PubMed  CAS  Google Scholar 

  • Kumar RK, Herbert C, Thomas PS, Wollin L, Beume R, Yang M, Webb DC, Foster PS (2003) Inhibition of inflammation and remodeling by roflumilast and dexamethasone in murine chronic asthma. J Pharmacol Exp Ther 307:349–355

    PubMed  CAS  Google Scholar 

  • Kung TT, Crawley Y, Luo B, Young S, Kreutner W, Chapman RW (2000) Inhibition of pulmonary eosinophilia and airway hyperresponsiveness in allergic mice by rolipram: involvement of endogenously released corticosterone and catecholamines. Br J Pharmacol 130:457–463

    PubMed  CAS  Google Scholar 

  • Kuss H, Hoefgen N, Johanssen S, Kronbach T, Rundfeldt C (2003) In vivo efficacy in airway disease models of N-(3, 5-dichloropyrid-4-yl)-[1-(4-fluorobenzyl)-5-hydroxy-indole-3-yl]-glyo xylic acid amide (AWD 12–281), a selective phosphodiesterase 4 inhibitor for inhaled administration. J Pharmacol Exp Ther 307:373–385

    PubMed  CAS  Google Scholar 

  • Lamontagne S, Meadows E, Luk P, Normandin D, Muise E, Boulet L, Pon DJ, Robichaud A, Robertson GS, Metters KM, Nantel F (2001) Localization of phosphodiesterase-4 isoforms in the medulla and nodose ganglion of the squirrel monkey. Brain Res 920:84–96

    PubMed  CAS  Google Scholar 

  • Landells LJ, Szilagy CM, Jones NA, Banner KH, Allen JM, Doherty A, O’Connor BJ, Spina D, Page CP (2001) Identification and quantification of phosphodiesterase 4 subtypes in CD4 and CD8 lymphocytes from healthy and asthmatic subjects. Br J Pharmacol 133:722–729

    PubMed  CAS  Google Scholar 

  • Leclerc O, Lagente V, Planquois JM, Berthelier C, Artola M, Eichholtz T, Bertrand CP, Schmidlin F (2006) Involvement of MMP-12 and phosphodiesterase type 4 in cigarette smoke-induced inflammation in mice. Eur Respir J 27:1102–1109

    PubMed  CAS  Google Scholar 

  • Lehnart SE, Wehrens XH, Reiken S, Warrier S, Belevych AE, Harvey RD, Richter W, Jin SL, Conti M, Marks AR (2005) Phosphodiesterase 4D deficiency in the ryanodine-receptor complex promotes heart failure and arrhythmias. Cell 123:25–35

    PubMed  CAS  Google Scholar 

  • Louw C, Williams Z, Venter L, Leichtl S, Schmid-Wirlitsch C, Bredenbroker D, Bardin PG (2007) Roflumilast, a phosphodiesterase 4 inhibitor, reduces airway hyperresponsiveness after allergen challenge. Respiration 74:411–417

    PubMed  CAS  Google Scholar 

  • Lu S, Liu N, Dass SB, Reiss TF, Knorr BA (2009) Randomized, placebo-controlled study of a selective PDE4 inhibitor in the treatment of asthma. Respir Med 103:342–347

    PubMed  Google Scholar 

  • Ma R, Yang BY, Wu CY (2008) A selective phosphodiesterase 4 (PDE4) inhibitor Zl-n-91 suppresses IL-17 production by human memory Th17 cells. Int Immunopharmacol 8:1408–1417

    PubMed  CAS  Google Scholar 

  • Manning CD, Burman M, Christensen SB, Cieslinski LB, Essayan DM, Grous M, Torphy TJ, Barnette MS (1999) Suppression of human inflammatory cell function by subtype- selective PDE4 inhibitors correlates with inhibition of PDE4A and PDE4B. Br J Pharmacol 128:1393–1398

    PubMed  CAS  Google Scholar 

  • Martin-Chouly CA, Astier A, Jacob C, Pruniaux MP, Bertrand C, Lagente V (2004) Modulation of matrix metalloproteinase production from human lung fibroblasts by type 4 phosphodiesterase inhibitors. Life Sci 75:823–840

    PubMed  CAS  Google Scholar 

  • Martorana PA, Beume R, Lucattelli M, Wollin L, Lungarella G (2005) Roflumilast fully prevents emphysema in mice chronically exposed to cigarette smoke. Am J Respir Crit Care Med 172:848–853

    PubMed  Google Scholar 

  • McCahill AC, Huston E, Li X, Houslay MD (2008) PDE4 associates with different scaffolding proteins: modulating interactions as treatment for certain diseases. Handb Exp Pharmacol (186); 125-166

    Google Scholar 

  • McCluskie K, Klein U, Linnevers C, Ji YH, Yang A, Husfeld C, Thomas GR (2006) Phosphodiesterase type 4 inhibitors cause proinflammatory effects in vivo. J Pharmacol Exp Ther 319:468–476

    PubMed  CAS  Google Scholar 

  • Mehats C, Jin SL, Wahlstrom J, Law E, Umetsu DT, Conti M (2003) PDE4D plays a critical role in the control of airway smooth muscle contraction. FASEB J 17:1831–1841

    PubMed  CAS  Google Scholar 

  • Millar JK, Mackie S, Clapcote SJ, Murdoch H, Pickard BS, Christie S, Muir WJ, Blackwood DH, Roder JC, Houslay MD, Porteous DJ (2007) Disrupted in schizophrenia 1 and phosphodiesterase 4B: towards an understanding of psychiatric illness. J Physiol 584:401–405

    PubMed  CAS  Google Scholar 

  • Nazarian R, Weinberg JM (2009) AN-2728, a PDE4 inhibitor for the potential topical treatment of psoriasis and atopic dermatitis. Curr Opin Investig Drugs 10:1236–1242

    PubMed  CAS  Google Scholar 

  • Nestle FO, Kaplan DH, Barker J (2009) Psoriasis. N Engl J Med 361:496–509

    PubMed  CAS  Google Scholar 

  • Noh AL, Yang M, Lee JM, Park H, Lee DS, Yim M (2009) Phosphodiesterase 3 and 4 negatively regulate receptor activator of nuclear factor-kappaB ligand-mediated osteoclast formation by prostaglandin E2. Biol Pharm Bull 32:1844–1848

    PubMed  CAS  Google Scholar 

  • Nyce JW, Metzger WJ (1997) DNA antisense therapy for asthma in an animal model. Nature 385:721–725

    PubMed  CAS  Google Scholar 

  • Nyska A, Herbert RA, Chan PC, Haseman JK, Hailey JR (1998) Theophylline-induced mesenteric periarteritis in F344/N rats. Arch Toxicol 72:731–737

    PubMed  CAS  Google Scholar 

  • O’Shaughnessy MJ, Chen ZM, Gramaglia I, Taylor PA, Panoskaltsis-Mortari A, Vogtenhuber C, Palmer E, Grader-Beck T, Boussiotis VA, Blazar BR (2007) Elevation of intracellular cyclic AMP in alloreactive CD4(+) T Cells induces alloantigen-specific tolerance that can prevent GVHD lethality in vivo. Biol Blood Marrow Transplant 13:530–542

    PubMed  Google Scholar 

  • Ohta K, Fukuchi Y, Grouse L, Mizutani R, Rabe KF, Rennard SI, Zhong NS (2004) A prospective clinical study of theophylline safety in 3810 elderly with asthma or COPD. Respir Med 98:1016–1024

    PubMed  Google Scholar 

  • Papakostantinou E, Xenos K, Markantonis SL, Druska S, Stratigos A, Katsambas A (2005) Efficacy of 2 weeks’ application of theophylline ointment in psoriasis vulgaris. J Dermatol Treat 16:169–170

    CAS  Google Scholar 

  • Parkkonen J, Hasala H, Moilanen E, Giembycz MA, Kankaanranta H (2007) Phosphodiesterase 4 inhibitors delay human eosinophil and neutrophil apoptosis in the absence and presence of salbutamol. Pulm Pharmacol Ther 21:499–506

    PubMed  Google Scholar 

  • Perez-Torres S, Miro X, Palacios JM, Cortes R, Puigdomenech P, Mengod G (2000) Phosphodiesterase type 4 isozymes expression in human brain examined by in situ hybridization histochemistry and[3H]rolipram binding autoradiography. Comparison with monkey and rat brain. J Chem Neuroanat 20:349–374

    PubMed  CAS  Google Scholar 

  • Peter D, Jin SL, Conti M, Hatzelmann A, Zitt C (2007) Differential expression and function of phosphodiesterase 4 (PDE4) subtypes in human primary CD4+ T cells: predominant role of PDE4D. J Immunol 178:4820–4831

    PubMed  CAS  Google Scholar 

  • Phillips P, Bennetts M, Banner K, Ward J, Wessels D, Fuhr R (2007) The PDE4 inhibitor UK-500,001 does not significantly inhibit airway responses to allergen and histamine. Eur Resp J: 490s. Ref Type: Abstract

    Google Scholar 

  • Rabe KF, Bateman ED, O’Donnell D, Witte S, Bredenbroker D, Bethke TD (2005) Roflumilast – an oral anti-inflammatory treatment for chronic obstructive pulmonary disease: a randomised controlled trial. Lancet 366:563–571

    PubMed  CAS  Google Scholar 

  • Rennard SI (2004) Treatment of stable chronic obstructive pulmonary disease. Lancet 364:791–802

    PubMed  CAS  Google Scholar 

  • Rennard SI, Schachter N, Strek M, Rickard K, Amit O (2006) Cilomilast for COPD: results of a 6-month, placebo-controlled study of a potent, selective inhibitor of phosphodiesterase 4. Chest 129:56–66

    PubMed  CAS  Google Scholar 

  • Robichaud A, Tattersall FD, Choudhury I, Rodger IW (1999) Emesis induced by inhibitors of type IV cyclic nucleotide phosphodiesterase (PDE IV) in the ferret. Neuropharmacology 38:289–297

    PubMed  CAS  Google Scholar 

  • Robichaud A, Savoie C, Stamatiou PB, Tattersall FD, Chan CC (2001) PDE4 inhibitors induce emesis in ferrets via a noradrenergic pathway. Neuropharmacology 40:262–269

    PubMed  CAS  Google Scholar 

  • Robichaud A, Savoie C, Stamatiou PB, Lachance N, Jolicoeur P, Rasori R, Chan CC (2002a) Assessing the emetic potential of PDE4 inhibitors in rats. Br J Pharmacol 135:113–118

    PubMed  CAS  Google Scholar 

  • Robichaud A, Stamatiou PB, Jin SL, Lachance N, Macdonald D, Laliberte F, Liu S, Huang Z, Conti M, Chan CC (2002b) Deletion of phosphodiesterase 4D in mice shortens alpha(2)-adrenoceptor-mediated anesthesia, a behavioral correlate of emesis. J Clin Invest 110:1045–1052

    PubMed  CAS  Google Scholar 

  • Roth BL, Sheffler DJ, Kroeze WK (2004) Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discov 3:353–359

    PubMed  CAS  Google Scholar 

  • Salvi SS, Barnes PJ (2009) Chronic obstructive pulmonary disease in non-smokers. Lancet 374:733–743

    PubMed  Google Scholar 

  • Sanz MJ, Cortijo J, Taha MA, Cerda-Nicolas M, Schatton E, Burgbacher B, Klar J, Tenor H, Schudt C, Issekutz AC, Hatzelmann A, Morcillo EJ (2007) Roflumilast inhibits leukocyte-endothelial cell interactions, expression of adhesion molecules and microvascular permeability. Br J Pharmacol 152:481–492

    PubMed  CAS  Google Scholar 

  • Schafer P, Parton A, Gandhi A, Capone L, Adams M, Wu L, Bartlett J, Loveland M, Gilhar A, Cheung YF, Baillie G, Houslay M, Man HW, Muller G, Stirling D (2010) Apremilast, a cAMP phosphodiesterase-4 inhibitor, demonstrates anti-inflammatory activity in vitro and in a model of psoriasis. Br J Pharmacol 159:842–855

    PubMed  CAS  Google Scholar 

  • Schreiber S, Keshavarzian A, Isaacs KL, Schollenberger J, Guzman JP, Orlandi C, Hanauer SB (2007) A randomized, placebo-controlled, phase II study of tetomilast in active ulcerative colitis. Gastroenterology 132:76–86

    PubMed  CAS  Google Scholar 

  • Shichijo M, Inagaki N, Nakai N, Kimata M, Nakahata T, Serizawa I, Iikura Y, Saito H, Nagai H (1998) The effects of anti-asthma drugs on mediator release from cultured human mast cells. Clin Exp Allergy 28:1228–1236

    PubMed  CAS  Google Scholar 

  • Shore A, Dosch H, Gelfand EW (1978) Induction and separation of antigen-dependent T helper and T suppressor cells in man. Nature 274:586–587

    PubMed  CAS  Google Scholar 

  • Singh D, Petavy F, Macdonald AJ, Lazaar AL, O’Connor BJ (2010) The inhaled phosphodiesterase 4 inhibitor GSK256066 reduces allergen challenge responses in asthma. Respir Res 11:26–35

    PubMed  Google Scholar 

  • Smith SJ, Brookes-Fazakerley S, Donnelly LE, Barnes PJ, Barnette MS, Giembycz MA (2003) Ubiquitous expression of phosphodiesterase 7A in human proinflammatory and immune cells. Am J Physiol Lung Cell Mol Physiol 284:L279–L289

    PubMed  CAS  Google Scholar 

  • Smith SJ, Cieslinski LB, Newton R, Donnelly LE, Fenwick PS, Nicholson AG, Barnes PJ, Barnette MS, Giembycz MA (2004) Discovery of BRL 50481 [3-(N, N-dimethylsulfonamido)-4-methyl-nitrobenzene], a selective inhibitor of phosphodiesterase 7: in vitro studies in human monocytes, lung macrophages, and CD8+ T-lymphocytes. Mol Pharmacol 66:1679–1689

    PubMed  CAS  Google Scholar 

  • Spina D (2003) Phosphodiesterase-4 inhibitors in the treatment of inflammatory lung disease. Drugs 63:2575–2594

    PubMed  CAS  Google Scholar 

  • Spina D (2004) The potential of PDE4 inhibitors in respiratory disease. Curr Drug Targets Inflamm Allergy 3:231–236

    PubMed  CAS  Google Scholar 

  • Spina D (2008) PDE4 inhibitors: current status. Br J Pharmacol 155:308–315

    PubMed  CAS  Google Scholar 

  • Spina D, Harrison S, Page CP (1995) Regulation by phosphodiesterase isoenzymes of non-adrenergic non- cholinergic contraction in guinea-pig isolated main bronchus. Br J Pharmacol 116:2334–2340

    PubMed  CAS  Google Scholar 

  • Sullivan P, Bekir S, Jaffar Z, Page C, Jeffery P, Costello J (1994) Anti-inflammatory effects of low-dose oral theophylline in atopic asthma [published erratum appears in Lancet 1994 Jun 11; 343(8911):1512]. Lancet 343:1006–1008

    PubMed  CAS  Google Scholar 

  • Takahashi M, Terwilliger R, Lane C, Mezes PS, Conti M, Duman RS (1999) Chronic antidepressant administration increases the expression of cAMP-specific phosphodiesterase 4A and 4B isoforms. J Neurosci 19:610–618

    PubMed  CAS  Google Scholar 

  • Taylor PC, Feldmann M (2009) Anti-TNF biologic agents: still the therapy of choice for rheumatoid arthritis. Nat Rev Rheumatol 5:578–582

    PubMed  CAS  Google Scholar 

  • Tenor H, Hedbom E, Hauselmann HJ, Schudt C, Hatzelmann A (2002) Phosphodiesterase isoenzyme families in human osteoarthritis chondrocytes–functional importance of phosphodiesterase 4. Br J Pharmacol 135:609–618

    PubMed  CAS  Google Scholar 

  • Timmer W, Leclerc V, Birraux G, Neuhauser M, Hatzelmann A, Bethke T, Wurst W (2002) The new phosphodiesterase 4 inhibitor roflumilast is efficacious in exercise-induced asthma and leads to suppression of LPS-stimulated TNF-alpha ex vivo. J Clin Pharmacol 42:297–303

    PubMed  CAS  Google Scholar 

  • van Schalkwyk E, Strydom K, Williams Z, Venter L, Leichtl S, Schmid-Wirlitsch C, Bredenbroker D, Bardin PG (2005) Roflumilast, an oral, once-daily phosphodiesterase 4 inhibitor, attenuates allergen-induced asthmatic reactions. J Allergy Clin Immunol 116:292–298

    PubMed  Google Scholar 

  • Vestbo J, Tan L, Atkinson G, Ward J (2009) A controlled trial of 6-weeks’ treatment with a novel inhaled phosphodiesterase type-4 inhibitor in COPD. Eur Respir J 33:1039–1044

    PubMed  CAS  Google Scholar 

  • Wang H, Edens NK (2007) mRNA expression and antilipolytic role of phosphodiesterase 4 in rat adipocytes in vitro. J Lipid Res 48:1099–1107

    PubMed  CAS  Google Scholar 

  • Wang H, Peng MS, Chen Y, Geng J, Robinson H, Houslay MD, Cai J, Ke H (2007) Structures of the four subfamilies of phosphodiesterase-4 provide insight into the selectivity of their inhibitors. Biochem J 408:193–201

    PubMed  CAS  Google Scholar 

  • Weston MC, Anderson N, Peachell PT (1997) Effects of phosphodiesterase inhibitors on human lung mast cell and basophil function. Br J Pharmacol 121:287–295

    PubMed  CAS  Google Scholar 

  • Wright RK, Mandy SH, Halprin KM, Hsia SL (1973) Defects and deficiency of adenyl cyclase in psoriatic skin. Arch Dermatol 107:47–53

    PubMed  CAS  Google Scholar 

  • Xu RX, Hassell AM, Vanderwall D, Lambert MH, Holmes WD, Luther MA, Rocque WJ, Milburn MV, Zhao Y, Ke H, Nolte RT (2000) Atomic structure of PDE4: insights into phosphodiesterase mechanism a specificity. Science 288:1822–1825

    PubMed  CAS  Google Scholar 

  • Yao W, Tian XY, Chen J, Setterberg RB, Lundy MW, Chmielzwski P, Froman CA, Jee WS (2007) Rolipram, a phosphodiesterase 4 inhibitor, prevented cancellous and cortical bone loss by inhibiting endosteal bone resorption and maintaining the elevated periosteal bone formation in adult ovariectomized rats. J Musculoskelet Neuronal Interact 7:119–130

    PubMed  CAS  Google Scholar 

  • Zocchi MR, Pardi R, Gromo G, Ferrero E, Ferrero ME, Besana C, Rugarli C (1985) Theophylline induced non specific suppressor activity in human peripheral blood lymphocytes. J Immunopharmacol 7:217–234

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. P. Page .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Page, C.P., Spina, D. (2011). Phosphodiesterase Inhibitors in the Treatment of Inflammatory Diseases. In: Francis, S., Conti, M., Houslay, M. (eds) Phosphodiesterases as Drug Targets. Handbook of Experimental Pharmacology, vol 204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17969-3_17

Download citation

Publish with us

Policies and ethics