Skip to main content

Troglitazone

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 196))

Abstract

Troglitazone was the first thiazolidinedione antidiabetic agent approved for clinical use in 1997, but it was withdrawn from the market in 2000 due to serious idiosyncratic hepatotoxicity. Troglitazone contains the structure of a unique chroman ring of vitamin E, and this structure has the potential to undergo metabolic biotransformation to form quinone metabolites, phenoxy radical intermediate, and epoxide species. Although troglitazone has been shown to induce apoptosis in various hepatic and nonhepatic cells, the involvement of reactive metabolites in the troglitazone cytotoxicity is controversial. Numerous toxicological tests, both in vivo and in vitro, have been used to try to predict the toxicity, but no direct mechanism has been demonstrated that can explain the hapatotoxicity that occurred in some individuals. This chapter summarizes the proposed mechanisms of troglitazone hepatotoxicity based in vivo and in vitro studies. Many factors have been proposed to contribute to the mechanism underlying this idiosyncratic toxicity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akai S, Hosomi H, Minami K, Tsuneyama K, Katoh M, Nakajima M, Yokoi T (2007) Knock down of γ-glutamylcysteine synthetase in rat causes acetaminophen-induced hepatotoxicity. J Biol Chem 282:23996-234003

    Article  PubMed  CAS  Google Scholar 

  • Bae MA, Song BJ (2003) Critical role of c-Jun N-terminal protein kinase activation in troglitazone-induced apoptosis of human HepG2 hepatoma cells. Mol Pharmacol 63:401-408

    Article  PubMed  CAS  Google Scholar 

  • Bae MA, Rhee H, Song BJ (2003) Troglitazone but not rosiglitazone induces G1 cell cycle arrest and apoptosis in human and rat hepatoma cell lines. Toxicol Lett 139:67-75

    Google Scholar 

  • Bolton JL, Trush MA, Penning TM, Dryhurst G, Monks TJ (2000) Role of quinone in toxicology. Chem Res Toxicol 13:135-160

    Article  PubMed  CAS  Google Scholar 

  • Bourdi M, Larrey D, Nataf J, Bernuau J, Pessayre D, Iwasaki M, Guengerich FP, Beaune PH (1990) Anti-liver endoplasmic reticulum autoantibodies are directed against human cytochrome P-450IA2. A specific marker of dihydralazine-induced hepatitis. J Clin Invest 85(6):1967-73

    Google Scholar 

  • Bourdi M, Chen W, Peter RM, Martin JL, Buters JTM, Nelson SD, Pohl LR (1996) Human cytochrome P450 2E1 is a major autoantigen associated with halothane hepatitis. Chem Res Toxicol 9:1159-1166

    Article  PubMed  CAS  Google Scholar 

  • Bova MP, Tam D, McMahon G, Mattson MN (2005) Troglitazone induces a rapid drop of mitochondrial membrane potential in liver HepG2 cells. Toxicol Lett 155:41-50

    Article  PubMed  CAS  Google Scholar 

  • Brown C, Toh BH, Pedersen JS, Clarke FM, Mackay IR, Gust I (1987) Autoantibody to aldolase in acute and chronic hepatitis. Pathology 19:347-350

    Article  PubMed  CAS  Google Scholar 

  • Ciaraldi TP, Gilmore A, Olefsky JM, Goldberg M, Heidenreich KA (1990) In vitro studies on the action of CS-045, a new antidiabetic agent. Metabolism 39:1056-1062

    Article  PubMed  CAS  Google Scholar 

  • Fan YH, Chen H, Natarajan A, Guo Y, Harbinski F, Iyasere J, Christ W, Aktas H, Halperin JA (2004) Structure-activity requirements for the antiproliferative effect of troglitazone derivatives mediated by depletion of intracellular calcium. Bio Med Chem Lett 44:2547-2550

    Article  Google Scholar 

  • Freid J, Everitt D, Boscia J (2000) Rosiglitazone and hepatic failure. Ann Inter Med 132:164

    CAS  Google Scholar 

  • Fujiwara T, Okuno A, Yoshioka T, Horikoshi H (1995) Suppression of hepatic gluconeogenesis in long-term troglitazone treated diabetic KK and C57BL/KsJ-db/db mice. Metabolism 44:486-490

    Article  PubMed  CAS  Google Scholar 

  • Funk C, Pantze M, Jehle L, Ponelle C, Scheuermann G, Lazendic M, Gasser R (2001a) Troglitazone-induced intrahepatic cholestasis by an interference with the hepatobiliary export of the bile acids in male and female rats. Correlation with the gender difference in troglitazone sulfate formation and the inhibition of the canalicular bile salt export pump (Bsep) by troglitazone and troglitazone sulfate. Toxicology 167:83-98

    Article  PubMed  CAS  Google Scholar 

  • Funk C, Ponelle C, Scheuermann G, Pantze M (2001b) Cholestatic potential of troglitazone as a possible factor contributing to troglitazone-induced hepatotoxicity: In vivo and in vitro interaction at the canalicular bile salt export pump (Bsep) in the rat. Mol Pharmacol 59:627-635

    PubMed  CAS  Google Scholar 

  • Gardner OS, Shiau CW, Chen CH, Graves LM (2005) Peroxisome proliferator-activated receptor γ-independent activation of p38 MAPK by troglitazone involves calcium/calmodulin-dependent protein kinase II and protein kinase R: Correlation with endoplasmic reticulum stress. J Biol Chem 280:10109-10118

    Article  PubMed  CAS  Google Scholar 

  • Gething MJ, Sambrook J (1992) Protein folding in the cell. Nature 355:33-45

    Article  PubMed  CAS  Google Scholar 

  • Gitlin N, Julie NL, Spurr CL, Lim KN, Juarbe HM (1998) Two cases of severe clinical and histologic hepatotoxicity associated with troglitazone. Ann Intern Med 129:36-38

    PubMed  CAS  Google Scholar 

  • Gonzalo P, Lavergne JP, Reboud JP (2001) Pivotal role of the P1 N-terminal domain in the assembly of the mammalian ribosomal stalk and in the proteosynthetic activity. J Biol Chem 276:19762-19769

    Article  PubMed  CAS  Google Scholar 

  • Green S (1995) PPAR: a mediator of peroxisome proliferators action. Mutat Res 333:101-109

    Article  PubMed  CAS  Google Scholar 

  • Gut J, Christen U, Huwyler J (1993) Mechanism of halothane toxicity: Novel insights. Pharmac Ther 58:133-155

    Article  CAS  Google Scholar 

  • Hagenbuch B, Meier PJ (2003) The superfamily of organic anion transporting polypeptides. Biochim Biophys Acta 1609:1-18

    Article  PubMed  CAS  Google Scholar 

  • Hanefeld M (2001) Pharmacokinetics and clinical efficacy of pioglitazone. Int J Clin Pract Suppl 121:19-25

    PubMed  CAS  Google Scholar 

  • Haskins JR, Rowse P, Rahbari R, de la Iglesa FA (2001) Thiazolidinedione toxicity to isolated hepatocytes revealed by coherent multiprobe fluorescence microscopy and correlated with multiparameter flow cytometry of peripheral leukocytes. Arch Toxicol 75:425-438

    Article  PubMed  CAS  Google Scholar 

  • He K, Woolf TF, Kindt EK, Fielder AE, Talaat RE (2001) Troglitazone quinone formation catalyzed by human and rat CYP3A: An atypical CYP oxidation reaction. Biochem Pahrmacol 62:191-198

    Article  CAS  Google Scholar 

  • Hewitt NJ, Lloyd S, Haydan M, Butler R, Sakai Y, Springer R, Fackett A, and Li AP (2002) Correlation between troglitazone cytotoxicity and drug metabolic enzyme activities in cryopreserved human hepatocytes. Chem Biol Interact 142:73-82

    Google Scholar 

  • Holcik M, Sonenberg N (2005) Translational control in stress and apoptosis. Nature Rev Mol Cell Biol 6:318-327

    Article  CAS  Google Scholar 

  • Homberg JC, Andre C, Abuaf N (1984) A new anti-liver-kidney microsome antibody (andi-LKM2) in tienilic acid-induced hepatitis. Clin Exp Immunol 55:561-570

    PubMed  CAS  Google Scholar 

  • Honma W, Shimada M, Sasano H, Ozawa S, Miyata M, Nagata K, Ikeda T, Yamazoe Y (2002) Phenol sulfotransferase, ST1A3, as the main enzyme catalyzing sulfation of troglitazone in human liver. Drug Metab Dispos 30:944-952

    Article  PubMed  CAS  Google Scholar 

  • Inoue I, Katayama S, Takahashi K, Negishi K, Miyazaki T, Sonoda M, Komoda T (1997) Troglitazone has a scavenging effect on reactive oxygen species. Biochem Biophys Res Comm 235:113-116

    Article  PubMed  CAS  Google Scholar 

  • Isley WL, Oki JC (2000) Rosiglitazone and liver failure. Ann Intern Med 133:393

    PubMed  CAS  Google Scholar 

  • Izumi T, Enomoto S, Hoshiyama K, Sasahara K, Sugiyama Y (1997a) Pharmacokinetic stereoselectivity of troglitazone, an antidiabetic agent, in the KK mouse. Biopharm Drug Dispos 18:305-324

    Article  PubMed  CAS  Google Scholar 

  • Izumi T, Hoshiyama K, Enomoto S, Sasahara K, Sugiyama Y (1997b) Pharmacokinetics of troglitazone, an antidiabetic agent: Prediction of in vivo stereoselective sulfation and glucuronidation from in vitro data. J Pharmacol Exp Ther 280:1392-1400

    PubMed  CAS  Google Scholar 

  • Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK and p38 protein kinases. Science 298:1911-1912

    Article  PubMed  CAS  Google Scholar 

  • Ju C, Uetrecht JP (2002) Mechanism of idiosyncratic drug reaction: relative metabolites formation, protein binding and the regulation of the immune system. Curr Drug Metab 3:367-377

    Article  PubMed  CAS  Google Scholar 

  • Jung JY, Yoo CI, Kim HT, Kwon CH, Park JY, Kim YK (2007) Role of mitogen-activated protein kinase (MAPK) in troglitazone-induced osteoblastic cell death. Toxicology 234:73-82

    Article  PubMed  CAS  Google Scholar 

  • Kassahun K, Pearson PG, Tang W, McIntosh I, Leung K, Elmore C, Dean D, Wang R, Doss G, Baille TA (2001) Studies on the mechanism of troglitazone to reactive intermediates in vitro and in vivo. Evidence for novel biotransformation pathways involving quinone methide formation and thiazolidinedione ring scission. Chem Res Toxicol 14:62-70

    Article  PubMed  CAS  Google Scholar 

  • Kawai K, Kawasaki-Tokui Y, Odaka T, Tsuruta F, Kazui M, Iwabuchi H, Nakamura T, Kinoshita T, Ikeda T, Yoshioka T, Komai T, Nakamura K (1997) Disposition and metabolism of the new oral antidiabetic drug troglitazone in rats, mice and dogs. Arzneimittelforschung 47:356-368

    PubMed  CAS  Google Scholar 

  • Kawai K, Odaka T, Tsurata F, Tokui T, Ikeda T, Nakamura K (1998) Stereoselective metabolism of new oral anti-diabetic agent troglitazone stereoisomers in liver. Xenobio Metab Dispos 13:362-368

    CAS  Google Scholar 

  • Kenna JG, Knight TL, van Pelt FNAM (1993) Immunity to halothane metabolite-modified proteins in halothane hepatitis. Ann N Y Acad Sci 685:646-661

    Article  PubMed  CAS  Google Scholar 

  • Kostrubsky VE, Sinclair JF, Ramachandran V, Venkataramanan WYH, Kindt E, Galchev V, Rose K, Sinz M, Strom SC (2000) The role of conjugation in hepatotoxicity of troglitazone in human and porcine hepatocyte cultures. Drug Metab Dispos 28:1192-1197

    PubMed  CAS  Google Scholar 

  • Kostrubsky VE, Vore M, Kindt E, Burliegh J, Rogers K, Peter G, Altogge D, Sinz MW (2001) The effects of troglitazone biliary excretion on metabolite distribution and cholestasis in transporter-deficient rats. Drug Mtab Dispos 29:1561-1566

    CAS  Google Scholar 

  • Kreb R (2006) Implications of genetic polymorphism in drug transporters for pharmacotherapy. Cancer Lett 234:4-33

    Article  Google Scholar 

  • Lebovitz HE, Kreider M, Freed MI (2002) Evaluation of liver function in type 2 diabetic patients during clinical trials. Diabetes Care 25:815-821

    Article  PubMed  CAS  Google Scholar 

  • Lee WM (2003) Drug-induced hepatotoxicity. New Engl J Med 349:474-485

    Article  PubMed  CAS  Google Scholar 

  • Leeder JS, Riley RJ, Cook VA, Spielberg SP (1992) Human anti-cytochrome P450 antibodies in aromatic anticonvulsant-induced hypersensitivity reactions. J Pharmacol Exp Ther 263: 360-367

    PubMed  CAS  Google Scholar 

  • Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson T, Kliewer SA (1995) An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome-activated receptor γ (PPARγ). J Biol Chem 270:12953-12956

    Article  PubMed  CAS  Google Scholar 

  • Lim PL, Liu J, Go ML, Belsterli UA (2008) The mitochondrial superoxide/thioredoxin-2/Ask1 signaling pathway is critically involved in troglitazone-induced cell injury to human hepatocytes. Toxicol Sci 101:341-349

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Miller E, van de Water B, Stevens JL (1998) Endoplasmic reticulum stress proteins block oxidant-induced Ca2+ increases and cell death. J Biol Chem 273:12858-12862

    Google Scholar 

  • Lodish HF, Kong N (1990) Perturbation of cellular calcium blocks exit of secretory proteins from the rough endoplasmic reticulum. J Biol Chem 265:10893-10899

    PubMed  CAS  Google Scholar 

  • Loi CM, Young M, Randinitis E, Vassos A, Koup JR (1999) Clinical pharmacokinetics of troglitazone. Clin Pharmacokinet 37:91-104

    Article  PubMed  CAS  Google Scholar 

  • Maniratanachote R, Minami K, Katoh M, Nakajima M, Yokoi T (2005a) Chaperone proteins involved in troglitazone-induced toxicity in human hepatoma cell lines. Toxicol Sci 83: 293-302

    Article  PubMed  CAS  Google Scholar 

  • Maniratanachote R, Shibata A, Kaneko S, Yamamori I, Wakasugi T, Sawazaki T, Katoh K, Tokudome S, Nakajima M, Yokoi T (2005b) Detection of autoantibody to aldolase B in sera from patients with troglitazone-induced liver dysfunction. Toxicology 216:15-23

    Article  PubMed  CAS  Google Scholar 

  • Maniratanachote R, Minami K, Katoh M, Nakajima M, Yokoi T (2006) Dephosphorylation of ribosomal protein P0 in response to troglitazone-induced cytotoxicity. Toxicol Lett 166: 189-199

    Article  PubMed  CAS  Google Scholar 

  • Masubuchi Y, Kano S, Horie T (2006) Mitochondrial permeability transition as a potential determinant of hepatotoxicity of antidiabetic thazolidinediones. Toxicology 222:233-239

    Article  PubMed  CAS  Google Scholar 

  • Michalski C, Cui Y, Nies AT, Neuhaus P, Zanger UM, Klein K, Eichalbaum M, Keppler D, Konig J (2002) A naturally occurring mutation in the SLC21A6 gene causing impaired membrane localization of the hepatocyte uptake transporter. J Biol Chem 277:43058-43063

    Article  PubMed  CAS  Google Scholar 

  • Motomura W, Tanno S, Takahashi N, Nagamine M, Fukuda M, Hohgo Y, Okumura T (2005) Involvement of MEK-ERK signaling pathway in the inhibition of cell growth by troglitazone in human pancreatic cancer cell. Biochem Biophys Res Commun 332:89-94

    Article  PubMed  CAS  Google Scholar 

  • Nagasaki S, Abe T, Kawakami A et al (2002) Pioglitazone-induced hepatic injury in a patient previously receiving troglitazone with success. Diabe Med 19:344-348

    Article  Google Scholar 

  • Narayanan PK, Hart T, Elcock F, Zhang C, Hahn L, McFarland D, Schwartz L, Morgan DG, Bugelski P (2003) Troglitazone-induced intracellular oxidative stress in rat hepatoma cells: a flow cytometric assessment. Cytometry 52A:28-35

    Article  CAS  Google Scholar 

  • Neuschwander-Tetri BA, Isley WL, Oki JC, Ramrakhiani S, Quiason SG, Phillips NJ, Brunt EM (1998) Troglitazone-induced hepatic failure leading to liver transplantation. Ann Intern Med 129:38-41

    PubMed  CAS  Google Scholar 

  • Nozawa T, Sugiura S, Nakajima M, Goto A, Yokoi T, Nezu J, Tsuji A, Tamai I (2004) Involvement of organic anion transporting polypeptides in the transport of troglitazone sulfate: implications for understanding troglitazone hepatotoxicity. Drug Metab Dispos 32:291-294

    Article  PubMed  Google Scholar 

  • Ong MM, Latchoumycandane C, Boelsterli UA (2007) Troglitazone-induced hepatic necrosis in an animal model of silent genetic mitochondrial abnormalities. Toxicol Sci 97:205-213

    Article  PubMed  CAS  Google Scholar 

  • Ott P, Ranek L, Young MA (1998) Pharmacokinetics of troglitazone, a PPAR-g agonist, in patients with hepatic insufficiency. Eur J Clin Pharmacol 54:567-571

    Article  PubMed  CAS  Google Scholar 

  • Palakurthi SS, Aktas H, Grubissich LM, Mortensen RM, Halperin JA (2001) Anticancer effects of thiazolidinediones are independent of peroxisome proliferators-activated receptor γ and mediated by inhibition of translation initiation. Cancer Res 61:6213-6218

    PubMed  CAS  Google Scholar 

  • Park BK, Pirmohamed M, Kitteringham NR (1998) Role of drug disposition in drug hypersensitivity: a chemical, molecular and clinical perspective. Chem Res Toxicol 11:969-988

    Article  PubMed  CAS  Google Scholar 

  • PDR (1999) Rezulin®. In: Physician’s desk reference, 52nd edn. Medical Economics Company, Inc., Montvale, NJ, pp 2310-2314

    Google Scholar 

  • PDR (2005a) Actos®. In: Physician’s desk reference, 59th edn. Thomson PDR, Montvale, NJ, pp 3181-3185

    Google Scholar 

  • PDR (2005b) Avandia®. In: Physician’s desk reference, 59th edn. Thomson PDR, Montvale, NJ, pp 1438-1443

    Google Scholar 

  • Penhoet E, Rajkumar T, Rutter WJ (1966) Multiple forms of fructose diphosphate aldolase in mammalian tissues. Proc Natl Acad Sci USA 56:1275-1282

    Article  PubMed  CAS  Google Scholar 

  • Pohl LR, Satoh H, Christ DD, Kenna JG (1988) The immunologic and metabolic basis of drug hypersensitivity. Ann Rev Pharmacol 28:367-387

    Article  CAS  Google Scholar 

  • Prabhu S, Fackett A, Lloyd S, McClellan HA, Terrell CM, Silber PM, Li AP (2002) Identification of glutathione conjugates of troglitazone in human hepatocytes. Chem Biol Interact 142:83-97

    Article  PubMed  CAS  Google Scholar 

  • Preininger K, Stingl H, Englisch R, Furnsinn C, Graf J, Waldhausl W, Roden M (1999) Acute troglitazone action is isolated persused rat liver. Br J Pharmacol 126:372-378

    Article  PubMed  CAS  Google Scholar 

  • Pumford NR, Martin BM, Thomassen D, Burris JA, Kenna JG, Martin JL, Pohl LR (1993) Serum antibodies from halothane hepatitis patients react with the rat endoplasmic reticulum protein Erp72. Chem Res Toxicol 6:609-615

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran V, Kostrubsky VE, Komoroski BJ, Zhang S, Dorko K, Esplen JE, Strom SC, Venkataramanan R (1999) Troglitazone increases cytochrome P-450 3A protein and activity in primary cultures of human hepatocytes. Drug Metab Dispos 27:1194-1199

    PubMed  CAS  Google Scholar 

  • Robin MA, Maratrat M, Le Roy M, Le Breton FP, Bonierbale E, Dansette P, Ballet F, Mansuy D, Pessayre D (1996) Antigenic targets in tienilic acid hepatitis: Both cytochrome P450 2C11 and 2C11-tienilic acid adducts are transported to the plasma membrane of rat hepatocytes and recognized by human sera. J Clin Invest 98:1471-1480

    Article  PubMed  CAS  Google Scholar 

  • Rothwell C, McGuire EJ, Altrogge DM, Masuda H, de la Iglesia FA (2002) Chronic toxicity in monkeys with the thiazolidinedione antidiabetic agent troglitazone. J Toxicol Sci 27:35-47

    Article  PubMed  CAS  Google Scholar 

  • Sahi J, Hamilton G, Sinz M, Barros S, Huang SM, Lesko LJ, LeCluyse EL (2000) Effects of troglitazone on chromosome P450 enzymes in primary cultures of human and rat hepatocytes. Xenobiotica 30:273-284

    Article  PubMed  CAS  Google Scholar 

  • Saltiel AR, Olefsky JM (1996) Thiazolidinediones in the treatment of insulin resistance and type II diabetes. Diabetes 45:1661-1669

    Article  PubMed  CAS  Google Scholar 

  • Schultz WA, Eickerlmann P, Sies H (1996) Free radicals in toxicology: redox cycling and NAD(P) H:quinone oxidoreductase. Arch Toxicol Suppl 18:217-222

    Article  Google Scholar 

  • Sherr CJ, Roberts JM (1999) CDK inhibitors: Positive and negative regulators of G1-phase progression. Genes Dev 13:1501-1512

    Article  PubMed  CAS  Google Scholar 

  • Shiau CW, Yang CC, Kulp SK, Chen KF, Chen CS, Huang JW, Chen CH (2005) Thiazolidinediones mediate apoptosis in prostate cancer cells in part through inhibition of Bcl-xl/Bcl-2 functions independently of PPARγ. Cancer Res 65:1561-1569

    Article  PubMed  CAS  Google Scholar 

  • Shibuya A, Watanabe M, Fujita Y, Saigenji K, Kuwao S, Takahashi H, Takeuchi H (1998) An autopsy case of troglitazone-induced fulminant hepatitis. Diabetes Care 21:2140-2143

    Article  PubMed  CAS  Google Scholar 

  • Simon T, Bacquemont L, Mary-Krause M, de Waziers I, Beaune P, Funck-Brentano C, Jaillon P (2000) Combined glutachione-S-tranferase M1 and T1 genetic polymorphism and tacrine hepatotoxicity. Clin Pharmacol Ther 67:432-437

    Article  PubMed  CAS  Google Scholar 

  • Spiegelman BM (1998) PPAR-γ: Adipogenic regulator and thiazolidinedione receptor. Diabetes 47:507-514

    Article  PubMed  CAS  Google Scholar 

  • Takagi S, Nakajima M, Mohri T, Yokoi T (2008) Post-transcriptional regulation of human pregnane X receptor by micro-RNA affects the expression of cytochrome P450 3A4. J Biol Chem 283:9674-9680

    Article  PubMed  CAS  Google Scholar 

  • Tettey JN, Maggs JL, Rapeport WG, Pirmohamed M, Park BK (2001) Enzyme induction dependent bioactivation of troglitazone and troglitazone quinone in vivo. Chem Res Toxicol 14:965-974

    Article  PubMed  CAS  Google Scholar 

  • Tirmenstein MA, Hu CX, Gales TL, Maleeff BE, Narayanan PK, Kurali E, Hart TK, Thomas HC, Schwartz LW (2002) Effects of troglitazone on HepG2 viability and mitochondrial function. Toxicol Sci 69:131-138

    Article  PubMed  CAS  Google Scholar 

  • Toyoda Y, Tsuchida A, Iwami E, Miwa I (2001) Toxic effect of troglitazone on cultured rat hepatocytes. Life Sci 68:1867-1876

    Article  PubMed  CAS  Google Scholar 

  • Tsuchiya Y, Nakajima M, Takagi S, Taniya T, Yokoi T (2006) MicroRNA regulates the expression of human cytochrome P450 1B1. Cancer Res 66:9090-9098

    Article  PubMed  CAS  Google Scholar 

  • Vignati L, Turlizzi E, Monaci S, Grossi P, Kanter R, Monshouwer M (2005) An in vitro approach to detect metabolite toxicity due to CYP3A4-dependent bioactivation of xenobiotics. Toxicology 216:154-167

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Ohashi Y, Yasuda M, Takaoka M, Furukawa T, Yamoto T, Sanbuissho A, Manabe S (1999) Was it possible to predict liver dysfunction caused by troglitazone during the nonclinical safety studies? Iyakuhin Kenkyu 30:537-546

    Google Scholar 

  • Watanabe Y, Nakajima M, Yokoi T (2002) Troglitazone glucuronidation in human liver and intestine microsomes: high catalytic activity of UGT1A8 and UGT1A10. Drug Metab Dispos 30:1462-1469

    Article  PubMed  CAS  Google Scholar 

  • Watanabe I, Tomita A, Shimizu M, Sugawara M, Yasumo H, Koishi R, Takahashi T, Miyoshi K, Nakamura K, Izumi T, Matsushita Y, Furukawa H, Haruyama H, Koga T (2003) A study to survey susceptible genetic factors responsible for troglitazone-associated hepatotoxicity in Japanese patients with type 2 diabetes mellitus. Clin Pharmacol Ther 73:435-455

    Article  PubMed  CAS  Google Scholar 

  • Watkins PB, Whitcomb RW (1998) Hepatic dysfunction associated with troglitazone. N Engl J Med 338:916-917

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Nakajima M, Yamazaki H, Yokoi T (2001) Cytotoxicity and apoptosis produced by troglitazone in human hepatoma cells. Life Sci 70:471-482

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Yamazaki H, Ikeda T, Watanabe T, Iwabuchi H, Nakajima M, Yokoi T (2002) Formation of a quinone epoxide metabolite of troglitazone with cytotoxic to HepG2 cells. Drug Metab Dispos 30:155-160

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki H, Shibata A, Suzuki M, Nakajima M, Shimada N, Guengerich FP, Yokoi T (1999) Oxidation of troglitazone to a quinone-type metabolite catalyzed by cytochrome P-450 2C8 and P-450 3A4 in human liver microsomes. Drug Metab Dispos 27:1260-1266

    PubMed  CAS  Google Scholar 

  • Yoshigae Y, Konno K, Takasaki W, Ikeda T (2000) Characterization of UDP-glucuronosyltransferases (UGTS) involved in the metabolism of troglitazone in rats and humans. J Toxicol Sci 25:433-441

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Mr. Brent Bell for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuyoshi Yokoi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yokoi, T. (2010). Troglitazone. In: Uetrecht, J. (eds) Adverse Drug Reactions. Handbook of Experimental Pharmacology, vol 196. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00663-0_14

Download citation

Publish with us

Policies and ethics