Skip to main content

Adenosine Receptors and the Central Nervous System

  • Chapter
  • First Online:
Book cover Adenosine Receptors in Health and Disease

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 193))

Abstract

The adenosine receptors (ARs) in the nervous system act as a kind of “go-between” to regulate the release of neurotransmitters (this includes all known neurotransmitters) and the action of neuromodulators (e.g., neuropeptides, neurotrophic factors). Receptor–receptor interactions and AR–transporter interplay occur as part of the adenosine’s attempt to control synaptic transmission. A2AARs are more abundant in the striatum and A1ARs in the hippocampus, but both receptors interfere with the efficiency and plasticity-regulated synaptic transmission in most brain areas. The omnipresence of adenosine and A2A and A1 ARs in all nervous system cells (neurons and glia), together with the intensive release of adenosine following insults, makes adenosine a kind of “maestro” of the tripartite synapse in the homeostatic coordination of the brain function. Under physiological conditions, both A2A and A1 ARs play an important role in sleep and arousal, cognition, memory and learning, whereas under pathological conditions (e.g., Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, stroke, epilepsy, drug addiction, pain, schizophrenia, depression), ARs operate a time/circumstance window where in some circumstances A1AR agonists may predominate as early neuroprotectors, and in other circumstances A2AAR antagonists may alter the outcomes of some of the pathological deficiencies. In some circumstances, and depending on the therapeutic window, the use of A2AAR agonists may be initially beneficial; however, at later time points, the use of A2AAR antagonists proved beneficial in several pathologies. Since selective ligands for A1 and A2A ARs are now entering clinical trials, the time has come to determine the role of these receptors in neurological and psychiatric diseases and identify therapies that will alter the outcomes of these diseases, therefore providing a hopeful future for the patients who suffer from these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

Adenylate cyclase

ACh:

Acetylcholine

ADO:

Adenosine

ADP:

Adenosine 5-diphosphate

AK:

Adenosine kinase

AMP:

Adenosine 5-monophosphate

AMPA:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

AOPCP:

α, β-Methylene ADP

Ap5A:

Diadenosine pentaphosphate

AR:

Adenosine receptor

ATP:

Adenosine 5-triphosphate

BDNF:

Brain-derived neurotrophic factor

BRET:

Bioluminescence resonance energy transfer

CamK:

Calmodulin-dependent kinase

cAMP:

Cyclic adenosine 5-monophosphate

CB:

Cannabinoid

CGRP:

Calcitonin gene-related peptide

DA:

Dopamine

DARPP:

Dopamine- and cAMP-regulated phosphoprotein

DPCPX:

1,3-Dipropyl-8-cyclopentylxanthine

ENT:

Equilibrative nucleoside transporter

ERK:

Extracellular signal-regulated kinase

GABA:

γ-Aminobutyric acid

GAT:

GABA transporter

GLU:

Glutamate

GDNF:

Glial cell line-derived neurotrophic factor

GPCRs:

G-protein-coupled receptors

HEK cells:

Human embryonic kidney cells

HFS:

High-frequency stimulation

IL-6:

Interleukin 6

IP3:

Inositol triphosphate

i.v.:

Intravenous

KO:

Knockout

LFS:

Low-frequency stimulation

LTD:

Long-term depression

LTP:

Long-term potentiation

MAPK:

Mitogen-activated protein kinase

mGluR:

Metabotropic glutamate receptor (mGlu1–8 refer to mGluR subtypes)

NAc:

Nucleus accumbens

nAChR:

Nicotinic acetylcholine receptor

NBTI:

Nitrobenzylthioinosine

NGF:

Nerve growth factor

NMDA:

N-Methyl-d-aspartate

NT:

Neurotransmitter

NTR:

Neurotransmitter receptor

NPY:

Neuropeptide Y

NR:

NMDA receptor subunit

NT-3:

Neurotrophin 3

NTDase:

Ecto-5-nucleotidase

NTPDase:

Ectonucleoside triphosphate diphosphohydrolase

PDE:

Phosphodiesterase

PKA:

Protein kinase A

PKC:

Protein kinase C

PLC:

Phospholipase C

PTX:

Pertussis toxin

REM:

Rapid eye movement

Trk receptors:

Tropomyosin-related kinase receptors

VIP:

Vasoactive intestinal peptide

References

  • Abbracchio MP, Fogliatto G, Paoletti AM, Rovati GE, Cattabeni F (1992) Prolonged in vitro exposure of rat brain slices to adenosine analogues: selective desensitization of A1 but not A2 receptors. Eur J Pharmacol 227:317–324

    Article  CAS  PubMed  Google Scholar 

  • Adams CL, Cowen MS, Short JL, Lawrence AJ (2008) Combined antagonism of glutamate mGlu5 and adenosine A2A receptors interact to regulate alcohol-seeking in rats. Int J Neuropsychopharmacol 11:229–241

    Article  CAS  PubMed  Google Scholar 

  • Akhondzadeh S, Shasavand E, Jamilian H, Shabestari O, Kamalipour A (2000) Dipyridamole in the treatment of schizophrenia: adenosine–dopamine receptor interactions. J Clin Pharm Ther 25:131–137

    Article  CAS  PubMed  Google Scholar 

  • Albasanz JL, Rodríguez A, Ferrer I, Martín M (2006) Adenosine A2A receptors are up-regulated in Pick’s disease frontal cortex. Brain Pathol 16:249–255

    Article  CAS  PubMed  Google Scholar 

  • Albasanz JL, Rodríguez A, Ferrer I, Martín M (2007) Up-regulation of adenosine A1 receptors in frontal cortex from Pick’s disease cases. Eur J Neurosci 26:3501–3508

    PubMed  Google Scholar 

  • Albasanz JL, Perez S, Barrachina M, Ferrer I, Martín M (2008) Up-regulation of adenosine receptors in the frontal cortex in Alzheimer’s disease. Brain Pathol 18:211–219

    Article  CAS  PubMed  Google Scholar 

  • Alexander SP, Curtis AR, Hill SJ, Kendall DA (1992) Activation of a metabotropic excitatory aminoacid receptor potentiates A2b adenosine receptor-stimulated cyclic AMP accumulation. Neurosci Lett 146:231–233

    Article  CAS  PubMed  Google Scholar 

  • Almeida T, Rodrigues RJ, de Mendonça A, Ribeiro JA, Cunha RA (2003) Purinergic P2 receptors trigger adenosine release leading to adenosine A2A receptor activation and facilitation of long-term potentiation in rat hippocampal slices. Neuroscience 122:111–121

    Article  CAS  PubMed  Google Scholar 

  • Alsene K, Deckert J, Sand P, de Wit H (2003) Association between A2a receptor gene polymorphisms and caffeine-induced anxiety. Neuropsychopharmacology 28:1694–1702

    Article  CAS  PubMed  Google Scholar 

  • Andersson M, Usiello A, Borgkvist A, Pozzi L, Dominguez C, Fienberg AA, Svenningsson P, Fredholm BB, Borrelli E, Greengard P, Fisone G (2005) Cannabinoid action depends on phosphorylation of dopamine- and cAMP-regulated phosphoprotein of 32 kDa at the protein kinase A site in striatal projection neurons. J Neurosci 25:8432–8438

    Article  CAS  PubMed  Google Scholar 

  • Angelatou F, Pagonopoulou O, Maraziotis T, Olivier A, Villemeure JG, Avoli M, Kostopoulos G (1993) Upregulation of A1 adenosine receptors in human temporal lobe epilepsy: a quantitative autoradiographic study. Neurosci Lett 163:11–14

    Article  CAS  PubMed  Google Scholar 

  • Angulo E, Casadó V, Mallol J, Canela EI, Viñals F, Ferrer I, Lluis C, Franco R (2003) A1 adenosine receptors accumulate in neurodegenerative structures in Alzheimer disease and mediate both amyloid precursor protein processing and tau phosphorylation and translocation. Brain Pathol 13:440–451

    CAS  PubMed  Google Scholar 

  • Aranda JV, Turmen T (1979) Methylxanthines in apnea of prematurity. Clin Perinatol 6:87–108

    CAS  PubMed  Google Scholar 

  • Arendash GW, Schleif W, Rezai-Zadeh K, Jackson EK, Zacharia LC, Cracchiolo JR, Shippy D, Tan J (2006) Caffeine protects Alzheimer’s mice against cognitive impairment and reduces brain beta-amyloid production. Neuroscience 142:941–952

    Article  CAS  PubMed  Google Scholar 

  • Arrigoni E, Crocker AJ, Saper CB, Greene RW, Scammell TE (2005) Deletion of presynaptic adenosine A1 receptors impairs the recovery of synaptic transmission after hypoxia. Neuroscience 132:575–580

    Article  CAS  PubMed  Google Scholar 

  • Bahls FH, Ma KK, Bird TD (1991) Theophylline-associated seizures with “therapeutic” or low toxic serum concentrations: risk factors for serious outcome in adults. Neurology 41: 1309–1312

    CAS  PubMed  Google Scholar 

  • Bailey A, Ledent C, Kelly M, Hourani SM, Kitchen I (2002) Changes in spinal delta and kappa opioid systems in mice deficient in the A2A receptor gene. J Neurosci 22:9210–9220

    CAS  PubMed  Google Scholar 

  • Bailey A, Hawkins RM, Hourani SM, Kitchen I (2003) Quantitative autoradiography of adenosine receptors in brains of chronic naltrexone-treated mice. Br J Pharmacol 139:1187–1195

    Article  CAS  PubMed  Google Scholar 

  • Bairam A, Boutroy MJ, Badonnel Y, Vert P (1987) Theophylline versus caffeine: comparative effects in treatment of idiopathic apnea in the preterm infant. J Pediatr 110:636–639

    Article  CAS  PubMed  Google Scholar 

  • Barraco RA, Swanson TH, Phillis JW, Berman RF (1984) Anticonvulsant effects of adenosine analogues on amygdaloid-kindled seizures in rats. Neurosci Lett 46:317–322

    Article  CAS  PubMed  Google Scholar 

  • Basheer R, Strecker RE, Thakkar MM. McCarley RW (2004) Adenosine and sleep-wake regulation. Prog Neurobiol 73:379–396

    Article  CAS  PubMed  Google Scholar 

  • Bastia E, Xu YH, Scibelli AC, Day YJ, Linden J, Chen JF, Schwarzschild MA (2005) A crucial role for forebrain adenosine A(2A) receptors in amphetamine sensitization. Neuropsychopharmacology 30:891–900

    Article  CAS  PubMed  Google Scholar 

  • Batista LC, Prediger RD, Morato GS, Takahashi RN (2005) Blockade of adenosine and dopamine receptors inhibits the development of rapid tolerance to ethanol in mice. Psychopharmacology 181:714–721

    Article  CAS  PubMed  Google Scholar 

  • Bauman LA, Mahle CD, Boissard CG, Gribkoff VK (1992) Age-dependence of effects of A1 adenosine receptor antagonism in rat hippocampal slices. J Neurophysiol 68:629–638

    CAS  PubMed  Google Scholar 

  • Bekar L, Libionka W, Tian GF, Xu Q, Torres A, Wang X, Lovatt D, Williams E, Takano T, Schnermann J, Bakos R, Nedergaard M (2008) Adenosine is crucial for deep brain stimulation-mediated attenuation of tremor. Nat Med 14:17–19

    Article  CAS  Google Scholar 

  • Bender AS, Phillis JW, Wu PH (1980) Diazepam and flurazepam inhibit adenosine uptake by rat brain synaptosomes. J Pharm Pharmacol 32:293–294

    CAS  PubMed  Google Scholar 

  • Benington JH, Heller HC (1995) Restoration of brain energy metabolism as the function of sleep. Prog Neurobiol 45:347–360

    Article  CAS  PubMed  Google Scholar 

  • Biber K, Lubrich B, Fiebich BL, Boddeke HW, van Calker D (2001) Interleukin-6 enhances expression of adenosine A(1) receptor mRNA and signaling in cultured rat cortical astrocytes and brain slices. Neuropsychopharmacology 24:86–96

    Article  CAS  PubMed  Google Scholar 

  • Biber K, Pinto-Duarte A, Wittendorp MC, Dolga AM, Fernandes CC, Von Frijtag Drabbe Künzel J, Keijser JN, de Vries R, Ijzerman AP, Ribeiro JA, Eisel U, Sebastião AM, Boddeke HW (2007) Interleukin-6 upregulates neuronal adenosine A(1) receptors: implications for neuromodulation and neuroprotection. Neuropsychopharmacology 33:2237–2250

    Article  PubMed  CAS  Google Scholar 

  • Bilbao A, Cippitelli A, Martín AB, Granado N, Ortiz O, Bezard E, Chen JF, Navarro M, Rodríguez de Fonseca F, Moratalla R (2006) Absence of quasi-morphine withdrawal syndrome in adenosine A2A receptor knockout mice. Psychopharmacology 185:160–168

    Article  CAS  PubMed  Google Scholar 

  • Blum D, Gall D, Galas MC, d’Alcantara P, Bantubungi K, Schiffmann SN (2002) The adenosine A1 receptor agonist adenosine amine congener exerts a neuroprotective effect against the development of striatal lesions and motor impairments in the 3-nitropropionic acid model of neurotoxicity. J Neurosci 22:9122–9133

    CAS  PubMed  Google Scholar 

  • Blum D, Galas MC, Pintor A, Brouillet E, Ledent C, Muller CE, Bantubungi K, Galluzzo M, Gall D, Cuvelier L, Rolland AS, Popoli P, Schiffmann SN (2003) A dual role of adenosine A2A receptors in 3-nitropropionic acid-induced striatal lesions: implications for the neuroprotective potential of A2A antagonists. J Neurosci 23:5361–5369

    CAS  PubMed  Google Scholar 

  • Boison D (2007) Adenosine-based cell therapy approaches for pharmacoresistant epilepsies. Neurodegener Dis 4:28–433

    Article  CAS  PubMed  Google Scholar 

  • Boulanger L, Poo M (1999a) Presynaptic depolarization facilitates neurotrophin-induced synaptic potentiation. Nat Neurosci 2:346–351

    Article  CAS  PubMed  Google Scholar 

  • Boulanger L, Poo M (1999b) Gating of BDNF-induced synaptic potentiation by cAMP. Science 284:1982–1984

    Article  CAS  PubMed  Google Scholar 

  • Boulenger JP, Patel J, Marangos PJ (1982) Effects of caffeine and theophylline on adenosine and benzodiazepine receptors in human brain. Neurosci Lett 30:161–166

    Article  CAS  PubMed  Google Scholar 

  • Boulenger JP, Patel J, Post RM, Parma AM, Marangos PJ (1983) Chronic caffeine consumption increases the number of brain adenosine receptors. Life Sci 32:1135–1142

    Article  CAS  PubMed  Google Scholar 

  • Boulenger JP, Uhde TW, Wolff EA 3rd, Post RM (1984) Increased sensitivity to caffeine in patients with panic disorders. Preliminary evidence. Arch Gen Psychiat 41:1067–1071

    CAS  Google Scholar 

  • Braun N, Zhu Y, Krieglstein J, Culmsee C, Zimmermann H (1998) Upregulation of the enzyme chain hydrolyzing extracellular ATP after transient forebrain ischemia in the rat. J Neurosci 18:4891–4900

    CAS  PubMed  Google Scholar 

  • Brown SJ, James S, Reddington M, Richardson PJ (1990) Both A1 and A2a purine receptors regulate striatal acetylcholine release. J Neurochem 55:31–38

    Article  CAS  PubMed  Google Scholar 

  • Brundege JM, Williams JT (2002) Increase in adenosine sensitivity in the nucleus accumbens following chronic morphine treatment. J Neurophysiol 87:1369–1375

    CAS  PubMed  Google Scholar 

  • Budd DC, Nichols DG (1995) Protein kinase C-mediated suppression of the presynaptic adenosine A1 receptor by a facilitatory metabotropic glutamate receptor. J Neurochem 65:615–621

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G (1976) Purinergic receptors. J Theor Biol 62:491–503

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797

    Article  CAS  PubMed  Google Scholar 

  • Capasso A, Loizzo A (2001) Purinoreceptors are involved in the control of acute morphine withdrawal. Life Sci 69:2179–2188

    Article  CAS  PubMed  Google Scholar 

  • Carriba P, Ortiz O, Patkar K, Justinova Z, Stroik J, Themann A, Müller C, Woods AS, Hope BT, Ciruela F, Casadó V, Canela EI, Lluis C, Goldberg SR, Moratalla R, Franco R, Ferré S (2007) Striatal adenosine A2A and cannabinoid CB1 receptors form functional heteromeric complexes that mediate the motor effects of cannabinoids. Neuropsychopharmacology 32:2249–2259

    Article  CAS  PubMed  Google Scholar 

  • Carruthers AM, Sellers LA, Jenkins DW, Jarvie EM, Feniuk W, Humphrey PP (2001) Adenosine A(1) receptor-mediated inhibition of protein kinase A-induced calcitonin gene-related peptide release from rat trigeminal neurons. Mol Pharmacol 59:1533–1541

    CAS  PubMed  Google Scholar 

  • Castrén E, Võikar V, Rantamäki T (2007) Role of neurotrophic factors in depression. Curr Opin Pharmacol 7:18–21

    Article  PubMed  CAS  Google Scholar 

  • Chase TN, Bibbiani F, Bara-Jimenez W, Dimitrova T, Oh-Lee JD (2003) Translating A2A antagonist KW6002 from animal models to Parkinsonian patients. Neurology 61:S107–S111

    CAS  PubMed  Google Scholar 

  • Chen JF, Sonsalla PK, Pedata F, Melani A, Domenici MR, Popoli P, Geiger J, Lopes LV, de Mendonça A (2007) Adenosine A2A receptors and brain injury: broad spectrum of neuroprotection, multifaceted actions and “fine tuning” modulation. Prog Neurobiol 83:310–331

    Article  CAS  PubMed  Google Scholar 

  • Cheng HC, Shih HM, Chern Y (2002) Essential role of cAMP-response element-binding protein activation by A2A adenosine receptors in rescuing the nerve growth factor-induced neurite outgrowth impaired by blockage of the MAPK cascade. J Biol Chem 277:33930–33942

    Article  CAS  PubMed  Google Scholar 

  • Chin JH (1989) Adenosine receptors in brain: neuromodulation and role in epilepsy. Ann Neurol 26:695–698

    Article  CAS  PubMed  Google Scholar 

  • Ciccarelli R, Di Iorio P, Bruno V, Battaglia G, D’Alimonte I, D’Onofrio M, Nicoletti F, Caciagli F (1999) Activation of A(1) adenosine or mGlu3 metabotropic glutamate receptors enhances the release of nerve growth factor and S-100beta protein from cultured astrocytes. Glia 27:275–281

    Article  CAS  PubMed  Google Scholar 

  • Ciruela F, Casadó V, Rodrigues RJ, Luján R, Burgueño J, Canals M, Borycz J, Rebola N, Goldberg SR, Mallol J, Cortés A, Canela EI, López-Giménez JF, Milligan G, Lluis C, Cunha RA, Ferré S, Franco R (2006) Presynaptic control of striatal glutamatergic neurotransmission by adenosine A–A2A receptor heteromers. J Neurosci 26:2080–2087

    Article  CAS  PubMed  Google Scholar 

  • Coccurello R, Breysse N, Amalric M (2004) Simultaneous blockade of adenosine A2A and metabotropic glutamate mGlu5 receptors increase their efficacy in reversing Parkinsonian deficits in rats. Neuropsychopharmacology 29:1451–1461

    Article  CAS  PubMed  Google Scholar 

  • Coelho JE, Rebola N, Fragata I, Ribeiro JA, de Mendonça A, Cunha RA (2006) Hypoxia-induced desensitization and internalization of adenosine A1 receptors in the rat hippocampus. Neuroscience 138:1195–1203

    Article  CAS  PubMed  Google Scholar 

  • Coleman CG, Baghdoyan HA, Lydic R (2006) Dialysis delivery of an adenosine A2A agonist into the pontine reticular formation of C57BL/6J mouse increases pontine acetylcholine release and sleep. J Neurochem 96:1750–1759

    Article  CAS  PubMed  Google Scholar 

  • Conde SV, Obeso A, Vicario I, Rigual R, Rocher A, Gonzalez C (2006) Caffeine inhibition of rat carotid body chemoreceptors is mediated by A2A and A2B adenosine receptors. J Neurochem 98:616–628

    Article  CAS  PubMed  Google Scholar 

  • Congar P, Khazipov R, Ben-Ari Y (1995) Direct demonstration of functional disconnection by anoxia of inhibitory interneurons from excitatory inputs in rat hippocampus. J Neurophysiol 73:421–426

    CAS  PubMed  Google Scholar 

  • Conlay LA, Conant JA, deBros F, Wurtman R (1997) Caffeine alters plasma adenosine levels. Nature 389:136

    CAS  Google Scholar 

  • Cormier RJ, Mennerick S, Melbostad H, Zorumski CF (2001) Basal levels of adenosine modulate mGluR5 on rat hippocampal astrocytes. Glia 33:24–35

    Article  CAS  PubMed  Google Scholar 

  • Cornelis MC, El-Sohemy A, Campos H (2007) Genetic polymorphism of the adenosine A2A receptor is associated with habitual caffeine consumption. Am J Clin Nutr 86:240–244

    CAS  PubMed  Google Scholar 

  • Correia-de-Sá P, Ribeiro JA (1994a) Potentiation by tonic A2a-adenosine receptor activation of CGRP-facilitated [3H]-ACh release from rat motor nerve endings. Br J Pharmacol 111: 582–588

    PubMed  Google Scholar 

  • Correia-de-Sá P, Ribeiro JA (1994b) Tonic adenosine A2A receptor activation modulates nicotinic autoreceptor function at the rat neuromuscular junction. Eur J Pharmacol 271:349–355

    Article  PubMed  Google Scholar 

  • Correia-de-Sá, P, Sebastião AM, Ribeiro JA (1991) Inhibitory and excitatory effects of adenosine receptor agonists on evoked transmitter release from phrenic nerve ending of the rat. Br J Pharmacol 103:1614–1620

    PubMed  Google Scholar 

  • Correia-de-Sá P, Timóteo MA, Ribeiro JA (1996) Presynaptic A1 inhibitory/A2A facilitatory adenosine receptor activation balance depends on motor nerve stimulation paradigm at the rat hemidiaphragm. J Neurophysiol 76:3910–3919

    PubMed  Google Scholar 

  • Correia-de-Sá P, Timóteo MA, Ribeiro JA (2001) Synergism between A(2A)-adenosine receptor activation and vasoactive intestinal peptide to facilitate [3H]-acetylcholine release from the rat motor nerve terminals. Neurosci Lett 2001 309:101–114

    Article  PubMed  Google Scholar 

  • Corsi C, Melani A, Bianchi L, Pepeu G, Pedata F (1999) Effect of adenosine A2A receptor stimulation on GABA release from the striatum of young and aged rats in vivo. Neuroreport 10:3933–3937

    Article  CAS  PubMed  Google Scholar 

  • Corsi C, Melani A, Bianchi L, Pedata F (2000) Striatal A2A adenosine receptor antagonism differentially modifies striatal glutamate outflow in vivo in young and aged rats. Neuroreport 11:2591–2595

    Article  CAS  PubMed  Google Scholar 

  • Costenla AR, De Mendonça A, Sebastião A, Ribeiro JA (1999) An adenosine analogue inhibits NMDA receptor-mediated responses in bipolar cells of the rat retina. Exp Eye Res 68:367–370

    Article  CAS  PubMed  Google Scholar 

  • Cunha RA, Sebastião AM, Ribeiro JA (1992) Ecto-5-nucleotidase is associated with cholinergic nerve terminals in the hippocampus but not in the cerebral cortex of the rat. J Neurochem 59:657–666

    Article  CAS  PubMed  Google Scholar 

  • Cunha RA, Johansson B, van der Ploeg I, Sebastião AM, Ribeiro JA, Fredholm BB (1994a) Evidence for functionally important adenosine A2a receptors in the rat hippocampus. Brain Res 649:208–216

    Article  CAS  PubMed  Google Scholar 

  • Cunha RA, Milusheva E, Vizi ES, Ribeiro JA, Sebastião AM (1994b) Excitatory and inhibitory effects of A1 and A2A adenosine receptor activation on the electrically evoked [3H]acetylcholine release from different areas of the rat hippocampus. J Neurochem 63:207–214

    Article  CAS  PubMed  Google Scholar 

  • Cunha RA, Ribeiro JA, Sebastião AM (1994c) Purinergic modulation of the evoked release of [3H]acetylcholine from the hippocampus and cerebral cortex of the rat: role of the ectonucleotidases. Eur J Neurosci 6:33–42

    Article  CAS  PubMed  Google Scholar 

  • Cunha RA, Constantino MC, Sebastião AM, Ribeiro JA (1995) Modification of A1 and A2a adenosine receptor binding in aged striatum, hippocampus and cortex of the rat. Neuroreport 6:1583–1588

    Article  CAS  PubMed  Google Scholar 

  • Cunha RA, Vizi ES, Ribeiro JA, Sebastião AM (1996a) Preferential release of ATP and its extracellular catabolism as a source of adenosine upon high- but not low-frequency stimulation of rat hippocampal slices. J Neurochem 67:2180–2187

    Article  CAS  PubMed  Google Scholar 

  • Cunha RA, Correia-de-Sá P, Sebastião AM, Ribeiro JA (1996b) Preferential activation of excitatory adenosine receptors at rat hippocampal and neuromuscular synapses by adenosine formed from released adenine nucleotides. Br J Pharmacol 119:253–260

    CAS  PubMed  Google Scholar 

  • Cunha RA, Sebastião AM, Ribeiro JA (1998) Inhibition by ATP of hippocampal synaptic transmission requires localized extracellular catabolism by ecto-nucleotidases into adenosine and channeling to adenosine A1 receptors. J Neurosci 18:1987–1995

    CAS  PubMed  Google Scholar 

  • Cunha-Reis D, Sebastião AM, Wirkner K, Illes P, Ribeiro JA (2004) VIP enhances both pre- and post-synaptic GABAergic transmission to hippocampal interneurones leading to increased excitatory synaptic transmission to CA1 pyramidal cells. Br J Pharmacol 143:733–744

    Article  CAS  PubMed  Google Scholar 

  • Cunha-Reis D, Ribeiro JA, Sebastião AM (2005) VIP enhances synaptic transmission to hippocampal CA1 pyramidal cells through activation of both VPAC1 and VPAC2 receptors. Brain Res 1049:52–60

    Article  CAS  PubMed  Google Scholar 

  • Cunha-Reis D, Fontinha BM, Ribeiro JA, Sebastião AM (2007) Tonic adenosine A1 and A2A receptor activation is required for the excitatory action of VIP on synaptic transmission in the CA1 area of the hippocampus. Neuropharmacology 52:313–320

    Article  CAS  PubMed  Google Scholar 

  • Cunha-Reis D, Ribeiro JA, Sebastião AM (2008) A1 and A2A receptor activation by endogenous adenosine is required for VIP enhancement of K + -evoked [3H]-GABA release from rat hippocampal nerve terminals. Neurosci Lett 430:207–212

    Article  CAS  PubMed  Google Scholar 

  • Dall’Igna OP, Fett P, Gomes MW, Souza DO, Cunha RA, Lara DR (2007) Caffeine and adenosine A(2a) receptor antagonists prevent beta-amyloid (25–35)-induced cognitive deficits in mice. Exp Neurol 203:241–245

    Article  PubMed  CAS  Google Scholar 

  • Daly JW (2007) Caffeine analogs: biomedical impact. Cell Mol Life Sci 64:2153–2169

    Article  CAS  PubMed  Google Scholar 

  • Daré E, Schulte G, Karovic O, Hammarberg C, Fredholm BB (2007) Modulation of glial cell functions by adenosine receptors. Physiol Behav 92:15–20

    Article  PubMed  CAS  Google Scholar 

  • de Mendonça A, Ribeiro JA (1994) Endogenous adenosine modulates long-term potentiation in the hippocampus. Neuroscience 62:385–390

    Article  PubMed  Google Scholar 

  • de Mendonça A, Ribeiro JA (1997a) Influence of metabotropic glutamate receptors agonists on the inhibitory effects of adenosine A1 receptor activation in the rat hippocampus. Br J Pharmacol 121:1541–1548

    Article  PubMed  Google Scholar 

  • de Mendonça JA, Ribeiro JA (1997b) Adenosine and neuronal plasticity. Life Sci 60:245–251

    Article  PubMed  Google Scholar 

  • de Mendonça A, Sebastião AM, Ribeiro JA (1995) Inhibition of NMDA receptor-mediated currents in isolated rat hippocampal neurones by adenosine A1 receptor activation. Neuroreport 6: 1097–1100

    Article  PubMed  Google Scholar 

  • de Mendonça A, Almeida T, Bashir ZI, Ribeiro JA (1997c) Endogenous adenosine attenuates long-term depression and depotentiation in the CA1 region of the rat hippocampus. Neuropharmacology 36:161–167

    Article  PubMed  Google Scholar 

  • de Mendonça A, Sebastião AM, Ribeiro JA (2000) Adenosine: does it have a neuroprotective role after all? Brain Res Rev 33:258–274

    Article  PubMed  Google Scholar 

  • Deckert J, Nöthen MM, Franke P, Delmo C, Fritze J, Knapp M, Maier W, Beckmann H, Propping P (1998) Systematic mutation screening and association study of the A1 and A2a adenosine receptor genes in panic disorder suggest a contribution of the A2a gene to the development of disease. Mol Psychiatr 3:81–85

    Article  CAS  Google Scholar 

  • Deckert J, Brenner M, Durany N, Zöchling R, Paulus W, Ransmayr G, Tatschner T, Danielczyk W, Jellinger K, Riederer P (2003) Up-regulation of striatal adenosine A(2A) receptors in schizophrenia. Neuroreport 14:313–316

    Article  CAS  PubMed  Google Scholar 

  • DeLander GE, Wahl JJ (1988) Behavior induced by putative nociceptive neurotransmitters is inhibited by adenosine or adenosine analogs coadministered intrathecally. J Pharmacol Exp Ther 246:565–570

    CAS  PubMed  Google Scholar 

  • Deleu D, Jacob P, Chand P, Sarre S, Colwell A (2006) Effects of caffeine on levodopa pharmacokinetics and pharmacodynamics in Parkinson disease. Neurology 67:897–899

    Article  CAS  PubMed  Google Scholar 

  • DeMet E, Stein MK, Tran C, Chicz-DeMet A, Sangdahl C, Nelson J (1989) Caffeine taste test for panic disorder: adenosine receptor supersensitivity. Psychiatr Res 30:231–242

    Article  CAS  Google Scholar 

  • DeSanty KP, Dar MS (2001) Involvement of the cerebellar adenosine A(1) receptor in cannabinoid-induced motor incoordination in the acute and tolerant state in mice. Brain Res 905:178–187

    Article  CAS  PubMed  Google Scholar 

  • Desfrere L, Olivier P, Schwendimann L, Verney C, Gressens P (2007) Transient inhibition of astrocytogenesis in developing mouse brain following postnatal caffeine exposure. Pediatr Res 62:604–609

    Article  CAS  PubMed  Google Scholar 

  • Di Iorio P, Battaglia G, Ciccarelli R, Ballerini P, Giuliani P, Poli A, Nicoletti F, Caciagli (1996) F Interaction between A1 adenosine and class II metabotropic glutamate receptors in the regulation of purine and glutamate release from rat hippocampal slices. J Neurochem 67:302–309

    Article  PubMed  Google Scholar 

  • Díaz-Cabiale Z, Hurd Y, Guidolin D, Finnman UB, Zoli M, Agnati LF, Vanderhaeghen JJ, Fuxe K, Ferré S (2001) Adenosine A2A agonist CGS 21680 decreases the affinity of dopamine D2 receptors for dopamine in human striatum. Neuroreport 12:1831–1834

    Article  PubMed  Google Scholar 

  • Díaz-Hernández M, Pintor J, Miras-Portugal MT (2000) Modulation of the dinucleotide receptor present in rat midbrain synaptosomes by adenosine and ATP. Br J Pharmacol 130:434–440

    Article  PubMed  Google Scholar 

  • Díaz-Hernández M, Pereira MF, Pintor J, Cunha RA, Ribeiro JA, Miras-Portugal MT (2002) Modulation of the rat hippocampal dinucleotide receptor by adenosine receptor activation. J Pharmacol Exp Ther 301:441–450

    Article  PubMed  Google Scholar 

  • Diógenes MJ, Fernandes CC, Sebastião AM, Ribeiro JA (2004) Activation of adenosine A2A receptor facilitates brain-derived neurotrophic factor modulation of synaptic transmission in hippocampal slices. J Neurosci 24:2905–2913

    Article  PubMed  CAS  Google Scholar 

  • Diógenes MJ, Assaife-Lopes N, Pinto-Duarte A, Ribeiro JA, Sebastião AM (2007) Influence of age on BDNF modulation of hippocampal synaptic transmission: interplay with adenosine A2A receptors. Hippocampus 17:577–585

    Article  PubMed  CAS  Google Scholar 

  • Dixit A, Vaney N, Tandon OP (2006) Evaluation of cognitive brain functions in caffeine users: a P3 evoked potential study. Indian J Physiol Pharmacol 50:175–180

    PubMed  Google Scholar 

  • Dixon AK, Gubitz AK, Sirinathsinghji DJ, Richardson PJ, Freeman TC (1996) Tissue distribution of adenosine receptor mRNAs in the rat. Br J Pharmacol 118:1461–1468

    CAS  PubMed  Google Scholar 

  • Dixon AK, Widdowson L, Richardson PJ (1997) Desensitisation of the adenosine A1 receptor by the A2A receptor in rat striatum. J Neurochem 69:315–321

    Article  CAS  PubMed  Google Scholar 

  • Domenici MR, Scattoni ML, Martire A, Lastoria G, Potenza RL, Borioni A, Venerosi A, Calamandrei G, Popoli P (2007) Behavioral and electrophysiological effects of the adenosine A2A receptor antagonist SCH 58261 in R6/2 Huntington’s disease mice. Neurobiol Dis 28:197–205

    Article  CAS  PubMed  Google Scholar 

  • Donoso MV, Aedo F, Huidobro-Toro JP (2006) The role of adenosine A2A and A3 receptors on the differential modulation of norepinephrine and neuropeptide Y release from peripheral sympathetic nerve terminals. J Neurochem 96:1680–1695

    Article  CAS  PubMed  Google Scholar 

  • Doody RS, Geldmacher DS, Gordon B, Perdomo CA, Pratt RD (2001) Donepezil Study Group Open-label, multicenter, phase 3 extension study of the safety and efficacy of donepezil in patients with Alzheimer disease. Arch Neurol 58:427–433

    Article  CAS  PubMed  Google Scholar 

  • Dragunow M, Goddard GV, Laverty R (1985) Is adenosine an endogenous anticonvulsant? Epilepsia 26:480–487

    Article  CAS  PubMed  Google Scholar 

  • Duarte-Araújo M, Timóteo MA, Correia-de-Sá P (2004) Adenosine activating A(2A)-receptors coupled to adenylate cyclase/cyclic AMP pathway downregulates nicotinic autoreceptor function at the rat myenteric nerve terminals. Neurochem Int 45:641–651

    Article  PubMed  CAS  Google Scholar 

  • Dunwiddie TV (1999) Adenosine and suppression of seizures. Adv Neurol 79:1001–1010

    CAS  PubMed  Google Scholar 

  • Dunwiddie TV, Diao L, Kim HO, Jiang JL, Jacobson KA (1997) Activation of hippocampal adenosine A3 receptors produces a desensitization of A1 receptor-mediated responses in rat hippocampus. J Neurosci 17:607–614

    CAS  PubMed  Google Scholar 

  • Edwards FA, Gibb AJ, Colquhoun D (1992) ATP receptor-mediated synaptic currents in the central nervous system. Nature 359:144–147

    Article  CAS  PubMed  Google Scholar 

  • Eisenach JC, Rauck RL, Curry R (2003) Intrathecal, but not intravenous adenosine reduces allodynia in patients with neuropathic pain. Pain 105:65–70

    Article  CAS  PubMed  Google Scholar 

  • Eisenach JC, Hood DD, Curry R, Sawynok J, Yaksh TL, Li X (2004) Intrathecal but not intravenous opioids release adenosine from the spinal cord. J Pain 5:64–68

    Article  CAS  PubMed  Google Scholar 

  • El Yacoubi M, Ledent C, Parmentier M, Costentin J, Vaugeois JM (2000) The anxiogenic-like effect of caffeine in two experimental procedures measuring anxiety in the mouse is not shared by selective A(2A) adenosine receptor antagonists. Psychopharmacology 148:153–163

    Article  CAS  PubMed  Google Scholar 

  • El Yacoubi M, Ledent C, Parmentier M, Bertorelli R, Ongini E, Costentin J, Vaugeois JM (2001) Adenosine A2A receptor antagonists are potential antidepressants: evidence based on pharmacology and A2A receptor knockout mice. Br J Pharmacol 134:68–77

    Article  CAS  PubMed  Google Scholar 

  • El Yacoubi M, Costentin J, Vaugeois JM (2003) Adenosine A2A receptors and depression. Neurology 61:S72–S73

    Google Scholar 

  • El Yacoubi M, Ledent C, Parmentier M, Costentin J, Vaugeois JM (2008) Evidence for the involvement of the adenosine A(2A) receptor in the lowered susceptibility to pentylenetetrazol-induced seizures produced in mice by long-term treatment with caffeine. Neuropharmacology 55:35–40

    Article  CAS  PubMed  Google Scholar 

  • Elmenhorst D, Meyer PT, Winz OH, Matusch A, Ermert J, Coenen HH, Basheer R, Haas HL, Zilles K, Bauer A (2007) Sleep deprivation increases A1 adenosine receptor binding in the human brain: a positron emission tomography study. J Neurosci 27:2410–2415

    Article  CAS  PubMed  Google Scholar 

  • Esser MJ, Sawynok J (2000) Caffeine blockade of the thermal antihyperalgesic effect of acute amitriptyline in a rat model of neuropathic pain. Eur J Pharmacol 399:131–139

    Article  CAS  PubMed  Google Scholar 

  • Esser MJ, Chase T, Allen GV, Sawynok J (2001) Chronic administration of amitriptyline and caffeine in a rat model of neuropathic pain: multiple interactions. Eur J Pharmacol 430:211–218

    Article  CAS  PubMed  Google Scholar 

  • Fedele DE, Gouder N, Güttinger M, Gabernet L, Scheurer L, Rülicke T, Crestani F, Boison D (2005) Astrogliosis in epilepsy leads to overexpression of adenosine kinase, resulting in seizure aggravation. Brain 128:2383–2395

    Article  PubMed  Google Scholar 

  • Fedele DE, Li T, Lan JQ, Fredholm BB, Boison D (2006) Adenosine A1 receptors are crucial in keeping an epileptic focus localized. Exp Neurol 200:184–190

    CAS  PubMed  Google Scholar 

  • Fernandes CC, Pinto-Duarte A, Ribeiro JA and Sebastião AM (2008) Postsynaptic action of brain-derived neurotrophic factor attenuates alpha7 nicotinic acetylcholine receptor-mediated responses in hippocampal interneurons. J Neurosci 28:5611–5618

    Article  CAS  PubMed  Google Scholar 

  • Ferré S (2008) An update on the mechanisms of the psychostimulant effects of caffeine. J Neurochem 105:1067–1079

    Article  PubMed  CAS  Google Scholar 

  • Ferré S, von Euler G, Johansson B, Fredholm BB, Fuxe K (1991) Stimulation of high-affinity adenosine A2 receptors decreases the affinity of dopamine D2 receptors in rat striatal membranes. Proc Natl Acad Sci USA 88:7238–7241

    Article  PubMed  Google Scholar 

  • Ferré S, O’Connor WT, Snaprud P, Ungerstedt U, Fuxe K (1994) Antagonistic interaction between adenosine A2A receptors and dopamine D2 receptors in the ventral striopallidal system. Implications for the treatment of schizophrenia. Neuroscience 63:765–773

    Google Scholar 

  • Ferré S, Popoli P, Tinner-Staines B, Fuxe K (1996) Adenosine A1 receptor-dopamine D1 receptor interaction in the rat limbic system: modulation of dopamine D1 receptor antagonist binding sites. Neurosci Lett 208:109–112

    Article  PubMed  Google Scholar 

  • Ferré S, Popoli P, Rimondini R, Reggio R, Kehr J, Fuxe K (1999) Adenosine A2A and group I metabotropic glutamate receptors synergistically modulate the binding characteristics of dopamine D2 receptors in the rat striatum. Neuropharmacology 38:129–140

    Article  PubMed  Google Scholar 

  • Ferré S, Ciruela F, Woods AS, Lluis C, Franco R (2007a) Functional relevance of neurotransmitter receptor heteromers in the central nervous system. Trends Neurosci 30:440–446

    Article  PubMed  CAS  Google Scholar 

  • Ferré S, Diamond I, Goldberg SR, Yao L, Hourani SM, Huang ZL, Urade Y, Kitchen I (2007b) Adenosine A2A receptors in ventral striatum, hypothalamus and nociceptive circuitry implications for drug addiction, sleep and pain. Prog Neurobiol 83:332–347

    Article  PubMed  CAS  Google Scholar 

  • Ferreira JM, Paes-de-Carvalho R (2001) Long-term activation of adenosine A(2a) receptors blocks glutamate excitotoxicity in cultures of avian retinal neurons. Brain Res 900:169–176

    Article  CAS  PubMed  Google Scholar 

  • Fields RD, Burnstock G (2006) Purinergic signalling in neuron–glia interactions. Nat Rev Neurosci 7:423–436

    Article  CAS  PubMed  Google Scholar 

  • Filip M, Frankowska M, Zaniewska M, Przegaliski E, Muller CE, Agnati L, Franco R, Roberts DC, Fuxe K (2006) Involvement of adenosine A2A and dopamine receptors in the locomotor and sensitizing effects of cocaine. Brain Res 1077:67–80

    Article  CAS  PubMed  Google Scholar 

  • Florán B, Barajas C, Florán L, Erlij D, Aceves J (2002) Adenosine A1 receptors control dopamine D1-dependent [(3)H]GABA release in slices of substantia nigra pars reticulata and motor behavior in the rat. Neuroscience 115:743–751

    Article  PubMed  Google Scholar 

  • Florio C, Prezioso A, Papaioannou A, Vertua R (1998) Adenosine A1 receptors modulate anxiety in CD1 mice. Psychopharmacology 136:311–319

    Article  CAS  PubMed  Google Scholar 

  • Fontinha BM, Diógenes MJ, Ribeiro JA, Sebastião AM (2008) Enhancement of long-term potentiation by brain-derived neurotrophic factor requires adenosine A(2A) receptor activation by endogenous adenosine. Neuropharmacology 54:924–933

    Article  CAS  PubMed  Google Scholar 

  • Fowler JC (1993) Changes in extracellular adenosine levels and population spike amplitude during graded hypoxia in the rat hippocampal slice. Naunyn–Schmiedeberg’s Arch Pharmacol 347: 73–78

    CAS  Google Scholar 

  • Fredholm BB, Bättig K, Holmén J, Nehlig A, Zvartau EE (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51: 83–133

    CAS  PubMed  Google Scholar 

  • Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552

    CAS  Google Scholar 

  • Fredholm BB, Chern Y, Franco R, Sitkovsky M (2007) Aspects of the general biology of adenosine A2A signaling. Prog Neurobiol 83:263–276

    Article  CAS  PubMed  Google Scholar 

  • Frenguelli BG, Llaudet E, Dale N (2003) High-resolution real-time recording with microelectrode biosensors reveals novel aspects of adenosine release during hypoxia in rat hippocampal slices. J Neurochem 86:1506–1515

    Article  CAS  PubMed  Google Scholar 

  • Frenguelli BG, Wigmore G, Llaudet E, Dale N (2007) Temporal and mechanistic dissociation of ATP and adenosine release during ischaemia in the mammalian hippocampus. J Neurochem 101:1400–1413

    Article  CAS  PubMed  Google Scholar 

  • Fukumitsu N, Ishii K, Kimura Y, Oda K, Sasaki T, Mori Y, Ishiwata K (2003) Imaging of adenosine A1 receptors in the human brain by positron emission tomography with [11C]MPDX. Ann Nucl Med 17:511–515

    Article  CAS  PubMed  Google Scholar 

  • Fukumitsu N, Ishii K, Kimura Y, Oda K, Sasaki T, Mori Y, Ishiwata K (2005) Adenosine A1 receptor mapping of the human brain by PET with 8-dicyclopropylmethyl-1–11C-methyl-3-propylxanthine. J Nucl Med 46:32–37

    PubMed  Google Scholar 

  • Fuxe K, Ferré S, Genedani S, Franco R, Agnati LF (2007) Adenosine receptor-dopamine receptor interactions in the basal ganglia and their relevance for brain function. Physiol Behav 92: 210–217

    Article  CAS  PubMed  Google Scholar 

  • Ganfornina MD, Pérez-García MT, Gutiérrez G, Miguel-Velado E, López-López JR, Marín A, Sánchez D, González C (2005) Comparative gene expression profile of mouse carotid body and adrenal medulla under physiological hypoxia. J Physiol 566:491–503

    Article  CAS  PubMed  Google Scholar 

  • Gao ZG, Jacobson KA (2007) Emerging adenosine receptor agonists. Expert Opin Emerg Drugs 12:479–492

    Article  CAS  PubMed  Google Scholar 

  • Gaspardone A, Crea F, Tomai F, Iamele M Crossman DC, Pappagallo M, Versaci F, Chiariello L, Gioffre’ PA (1994) Substance P potentiates the algogenic effects of intraarterial infusion of adenosine. J Am Coll Cardiol 24:477–482

    Article  CAS  PubMed  Google Scholar 

  • Gauda EB, Northington FJ, Linden J, Rosin DL (2000) Differential expression of a(2a), A(1)-adenosine and D(2)-dopamine receptor genes in rat peripheral arterial chemoreceptors during postnatal development. Brain Res 872:1–10

    Article  CAS  PubMed  Google Scholar 

  • Gendron FP, Benrezzak O, Krugh BW, Kong Q, Weisman GA, Beaudoin AR (2002) Purine signaling and potential new therapeutic approach: possible outcomes of NTPDase inhibition. Curr Drug Targets 3:229–245

    Article  CAS  PubMed  Google Scholar 

  • Gidday JM (2006) Cerebral preconditioning and ischemic tolerance. Nat Rev Neurosci 7:437–448

    Article  CAS  PubMed  Google Scholar 

  • Giménez-Llort L, Schiffmann SN, Shmidt T, Canela L, Camón L, Wassholm M, Canals M, Terasmaa A, Fernández-Teruel A, Tobeña A, Popova E, Ferré S, Agnati L, Ciruela F, Martínez E, Scheel-Kruger J, Lluis C, Franco R, Fuxe K, Bader M (2007) Working memory deficits in transgenic rats overexpressing human adenosine A2A receptors in the brain. Neurobiol Learn Mem 87:42–56

    Article  PubMed  CAS  Google Scholar 

  • Ginés S, Hillion J, Torvinen M, Le Crom S, Casadó V, Canela EI, Rondin S, Lew JY, Watson S, Zoli M, Agnati LF, Verniera P, Lluis C, Ferré S, Fuxe K, Franco R (2000) Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. Proc Natl Acad Sci USA 97:8606–8611

    Article  PubMed  Google Scholar 

  • Ginsborg BL, Hirst GD (1971) Cyclic AMP, transmitter release and the effect of adenosine on neuromuscular transmission. Nat New Biol 232:63–64

    CAS  PubMed  Google Scholar 

  • Glass M, Faull RL, Bullock JY, Jansen K, Mee EW, Walker EB, Synek BJ, Dragunow M (1996) Loss of A1 adenosine receptors in human temporal lobe epilepsy. Brain Res 710:56–68

    Article  CAS  PubMed  Google Scholar 

  • Goadsby PJ (2008) Calcitonin gene-related peptide (CGRP) antagonists and migraine: is this a new era? Neurology 70:1300–1301

    Article  PubMed  Google Scholar 

  • Goadsby PJ, Hoskin KL, Storer RJ, Edvinsson L, Connor HE (2002) Adenosine A1 receptor agonists inhibit trigeminovascular nociceptive transmission. Brain 125:1392–1401

    Article  CAS  PubMed  Google Scholar 

  • Godfrey L, Yan L, Clarke GD, Ledent C, Kitchen I, Hourani SM (2006) Modulation of paracetamol antinociception by caffeine and by selective adenosine A2 receptor antagonists in mice. Eur J Pharmacol 531:80–86

    Article  CAS  PubMed  Google Scholar 

  • Golembiowska K, Dziubina A (2004). Striatal adenosine A(2A) receptor blockade increases extracellular dopamine release following L-DOPA administration in intact and dopamine-denervated rats. Neuropharmacology 47:414–426

    Article  CAS  PubMed  Google Scholar 

  • Gomes CA, Vaz SH, Ribeiro JA, Sebastião AM (2006) Glial cell line-derived neurotrophic factor (GDNF) enhances dopamine release from striatal nerve endings in an adenosine A2A receptor-dependent manner. Brain Res 1113:129–136

    Article  CAS  PubMed  Google Scholar 

  • Gray R, Rajan AS, Radcliffe KA, Yakehiro M, Dani JA (1996) Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature 383:713–716

    Article  CAS  PubMed  Google Scholar 

  • Green TA, Schenk S (2002) Dopaminergic mechanism for caffeine-produced cocaine seeking in rats. Neuropsychopharmacology 26:422–430

    Article  CAS  PubMed  Google Scholar 

  • Greengard P (2001) The neurobiology of slow synaptic transmission. Science 294:1024–1030

    Article  CAS  PubMed  Google Scholar 

  • Griffiths TL, Christie JM, Parsons ST, Holgate ST (1997) The effect of dipyridamole and theophylline on hypercapnic ventilatory responses: the role of adenosine. Eur Respir J 10:156–160

    Article  CAS  PubMed  Google Scholar 

  • Gu JG, Foga IO, Parkinson FE, Geiger JD (1995) Involvement of bidirectional adenosine transporters in the release of L-[3H]adenosine from rat brain synaptosomal preparations. J Neurochem 64:2105–2110

    Article  CAS  PubMed  Google Scholar 

  • Güttinger M, Fedele D, Koch P, Padrun V, Pralong WF, Brüstle O, Boison D (2005) Suppression of kindled seizures by paracrine adenosine release from stem cell-derived brain implants. Epilepsia 46:1162–1169

    Article  PubMed  Google Scholar 

  • Hack SP, Christie MJ (2003) Adaptations in adenosine signaling in drug dependence: therapeutic implications. Crit Rev Neurobiol 15:235–274

    Article  CAS  PubMed  Google Scholar 

  • Hack SP, Vaughan CW, Christie MJ (2003) Modulation of GABA release during morphine withdrawal in midbrain neurons in vitro. Neuropharmacology 45:575–584

    Article  CAS  PubMed  Google Scholar 

  • Halassa MM, Fellin T, Haydon PG (2007) The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med 13:54–63

    Article  CAS  PubMed  Google Scholar 

  • Hamilton SP, Slager SL, De Leon AB, Heiman GA, Klein DF, Hodge SE, Weissman MM, Fyer AJ, Knowles JA (2004) Evidence for genetic linkage between a polymorphism in the adenosine 2A receptor and panic disorder. Neuropsychopharmacology 29:558–565

    Article  CAS  PubMed  Google Scholar 

  • Hasselmo ME, Giocomo LM (2006) Cholinergic modulation of cortical function. J Mol Neurosci 30:133–135

    Article  CAS  PubMed  Google Scholar 

  • Hauber W, Bareiss A (2001) Facilitative effects of an adenosine A1/A2 receptor blockade on spatial memory performance of rats: selective enhancement of reference memory retention during the light period. Behav Brain Res 118:43–52

    Article  CAS  PubMed  Google Scholar 

  • Hayashida M, Fukuda K, Fukunaga A (2005) Clinical application of adenosine and ATP for pain control. J Anesth 19:225–235

    Article  PubMed  Google Scholar 

  • Heese K, Fiebich BL, Bauer J, Otten U (1997) Nerve growth factor (NGF) expression in rat microglia is induced by adenosine A2a-receptors. Neurosci Lett 231:83–86

    Article  CAS  PubMed  Google Scholar 

  • Hoehn K, White TD (1989) Evoked release of endogenous adenosine from rat cortical slices by K + and glutamate. Brain Res 478:149–151

    Article  CAS  PubMed  Google Scholar 

  • Hohoff C, McDonald JM, Baune BT, Cook EH, Deckert J, de Wit H (2005) Interindividual variation in anxiety response to amphetamine: possible role for adenosine A2A receptor gene variants. Am J Med Genet B Neuropsychiatr Genet 139:42–44

    Google Scholar 

  • Hong CJ, Liu HC, Liu TY, Liao DL, Tsai SJ (2005) Association studies of the adenosine A2a receptor (1976T > C) genetic polymorphism in Parkinson’s disease and schizophrenia. J Neural Transm 112:1503–1510

    Article  CAS  PubMed  Google Scholar 

  • Huang ZL, Qu WM, Eguchi N, Chen JF, Schwarzschild MA, Fredholm BB, Urade Y, Hayaishi O (2005) Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat Neurosci 8:858–859

    CAS  PubMed  Google Scholar 

  • Huber A, Güttinger M, Möhler H, Boison D (2002) Seizure suppression by adenosine A(2A) receptor activation in a rat model of audiogenic brainstem epilepsy. Neurosci Lett 329:289–292

    Article  CAS  PubMed  Google Scholar 

  • Hurley MJ, Mash DC, Jenner P (2000) Adenosine A(2A) receptor mRNA expression in Parkinson’s disease. Neurosci Lett 291:54–58

    Article  CAS  PubMed  Google Scholar 

  • Hussey MJ, Clarke GD, Ledent C, Hourani SM, Kitchen I (2007) Reduced response to the formalin test and lowered spinal NMDA glutamate receptor binding in adenosine A2A receptor knockout mice. Pain 129:287–294

    Article  CAS  PubMed  Google Scholar 

  • Ishiwata K, Mishina M, Kimura Y, Oda K, Sasaki T, Ishii K (2005) First visualization of adenosine A(2A) receptors in the human brain by positron emission tomography with [11C]TMSX. Synapse 55:133–136

    Article  CAS  PubMed  Google Scholar 

  • Jacobson KA, von Lubitz DKJE, Daly JW, Fredholm BB (1996) Adenosine receptor ligands: differences with acute versus chronic treatment. Trends Pharmacol Sci 17:108–113

    Article  CAS  PubMed  Google Scholar 

  • Jain N, Kemp N, Adeyemo O, Buchanan P, Stone TW (1995) Anxiolytic activity of adenosine receptor activation in mice. Br J Pharmacol 116:2127–2133

    CAS  PubMed  Google Scholar 

  • James S, Xuereb JH, Askalan R, Richardson PJ (1992) Adenosine receptors in post-mortem human brain. Br J Pharmacol 105:238–244

    CAS  PubMed  Google Scholar 

  • Jarvis MF, Yu H, McGaraughty S, Wismer CT, Mikusa J, Zhu C, Chu K, Kohlhaas K, Cowart M, Lee CH, Stewart AO, Cox BF, Polakowski J, Kowaluk EA (2002) Analgesic and anti-inflammatory effects of A-286501, a novel orally active adenosine kinase inhibitor. Pain 96:107–118

    Article  CAS  PubMed  Google Scholar 

  • Ji D, Lape R, Dani JA (2001) Timing and location of nicotinic activity enhances or depresses hippocampal synaptic plasticity. Neuron 31:131–141

    Article  CAS  PubMed  Google Scholar 

  • Jin X, Shepherd RK, Duling BR, Linden J (1997) Inosine binds to A3 adenosine receptors and stimulates mast cell degranulation. J Clin Invest 100:2849–2857

    Article  CAS  PubMed  Google Scholar 

  • Johansson B, Halldner L, Dunwiddie TV, Masino SA, Poelchen W, Giménez-Llort L, Escorihuela RM, Fernández-Teruel A, Wiesenfeld-Hallin Z, Xu XJ, Hårdemark A, Betsholtz C, Herlenius E, Fredholm BB (2001) Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor. Proc Natl Acad Sci USA 98:9407–9412

    Article  CAS  PubMed  Google Scholar 

  • Johnson-Kozlow M, Kritz-Silverstein D, Barrett-Connor E, Morton D (2002) Coffee consumption and cognitive function among older adults. Am J Epidemiol 156:842–850

    Article  PubMed  Google Scholar 

  • Kachroo A, Orlando LR, Grandy DK, Chen JF, Young AB, Schwarzschild MA (2005) Interactions between metabotropic glutamate 5 and adenosine A2A receptors in normal and parkinsonian mice. J Neurosci 25:10414–10419

    Article  CAS  PubMed  Google Scholar 

  • Kaplan GB, Coyle TS (1998) Adenosine kinase inhibitors attenuate opiate withdrawal via adenosine receptor activation. Eur J Pharmacol 362:1–8

    Article  CAS  PubMed  Google Scholar 

  • Kaplan GB, Leite-Morris KA (1997) Up-regulation of adenosine transporter-binding sites in striatum and hypothalamus of opiate tolerant mice. Brain Res 763:215–220

    Article  CAS  PubMed  Google Scholar 

  • Kaplan GB, Sears MT (1996) Adenosine receptor agonists attenuate and adenosine receptor antagonists exacerbate opiate withdrawal signs. Psychopharmacology 123:64–70

    Article  CAS  PubMed  Google Scholar 

  • Kaplan GB, KA Leite-Morris, MT Sears (1994) Alterations in adenosine A receptors in morphine dependence. Brain Res 657:347–350

    Article  CAS  PubMed  Google Scholar 

  • Kaster MP, Rosa AO, Rosso MM, Goulart EC, Santos AR, Rodrigues AL (2004) Adenosine administration produces an antidepressant-like effect in mice: evidence for the involvement of A1 and A2A receptors. Neurosci Lett 355:21–24

    Article  CAS  PubMed  Google Scholar 

  • Kaster MP, Budni J, Santos AR, Rodrigues AL (2007) Pharmacological evidence for the involvement of the opioid system in the antidepressant-like effect of adenosine in the mouse forced swimming test. Eur J Pharmacol 576:91–98

    Article  CAS  PubMed  Google Scholar 

  • Kaufman KR, Sachdeo RC (2003) Caffeinated beverages and decreased seizure control. Seizure 12:519–521

    Article  PubMed  Google Scholar 

  • Keil GJ 2nd, DeLander GE (1992) Spinally-mediated antinociception is induced in mice by an adenosine kinase-, but not by an adenosine deaminase, inhibitor. Life Sci 51:PL171–PL176

    Article  PubMed  Google Scholar 

  • Kessey K, Mogul DJ (1997) NMDA-Independent LTP by adenosine A2 receptor-mediated postsynaptic AMPA potentiation in hippocampus. J Neurophysiol 78:1965–1972

    CAS  PubMed  Google Scholar 

  • Khorasani MZ, Hajizadeh S, Fathollahi Y, Semnanian S (2006) Interaction of adenosine and naloxone on regional cerebral blood flow in morphine-dependent rats. Brain Res 1084:61–66

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa M, Houzen H, Tashiro K (2007) Effects of caffeine on the freezing of gait in Parkinson’s disease. Mov Disord 22:710–712

    Article  PubMed  Google Scholar 

  • Klein E, Zohar J, Geraci MF, Murphy DL, Uhde TW (1991) Anxiogenic effects of m-CPP in patients with panic disorder: comparison to caffeine’s anxiogenic effects. Biol Psychiat 30: 973–984

    Article  CAS  PubMed  Google Scholar 

  • Klishin A, Tsintsadze T, Lozovaya N, Krishtal O (1995) Latent N-methyl-D-aspartate receptors in the recurrent excitatory pathway between hippocampal CA1 pyramidal neurons: Ca(2 + )-dependent activation by blocking A1 adenosine receptors. Proc Natl Acad Sci USA 92: 12431–12435

    Article  CAS  PubMed  Google Scholar 

  • Knapp CM, Foye MM, Cottam N, Ciraulo DA, Kornetsky C (2001) Adenosine agonists CGS 21680 and NECA inhibit the initiation of cocaine self-administration. Pharmacol Biochem Behav 68:797–803

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi S, Conforti L, Millhorn DE (2000a) Gene expression and function of adenosine A(2A) receptor in the rat carotid body. Am J Physiol Lung Cell Mol Physiol 279:L273–L282

    CAS  PubMed  Google Scholar 

  • Kobayashi S, Zimmermann H, Millhorn DE (2000b) Chronic hypoxia enhances adenosine release in rat PC12 cells by altering adenosine metabolism and membrane transport. J Neurochem 74:621–632

    Article  CAS  PubMed  Google Scholar 

  • Kochanek PM, Vagni VA, Janesko KL, Washington CB, Crumrine PK, Garman RH, Jenkins LW, Clark RS, Homanics GE, Dixon CE, Schnermann J, Jackson EK (2006) Adenosine A1 receptor knockout mice develop lethal status epilepticus after experimental traumatic brain injury. J Cereb Blood Flow Metab 26:565–575

    Article  CAS  PubMed  Google Scholar 

  • Koos BJ, Chau A (1998) Fetal cardiovascular and breathing responses to an adenosine A2a receptor agonist in sheep. Am J Physiol 274:R152–R159

    CAS  PubMed  Google Scholar 

  • Koos BJ, Kawasaki Y, Kim YH, Bohorquez F (2005) Adenosine A2A-receptor blockade abolishes the roll-off respiratory response to hypoxia in awake lambs. Am J Physiol Regul Integr Comp Physiol 288:R1185–R1194

    CAS  PubMed  Google Scholar 

  • Kouznetsova M, Kelley B, Shen M, Thayer SA (2002) Desensitization of cannabinoid-mediated presynaptic inhibition of neurotransmission between rat hippocampal neurons in culture. Mol Pharmacol 61:477–485

    Article  CAS  PubMed  Google Scholar 

  • Kozisek ME, Middlemas D, Bylund DB (2008) Brain-derived neurotrophic factor and its receptor tropomyosin-related kinase B in the mechanism of action of antidepressant therapies. Pharmacol Ther 117:30–51

    Article  CAS  PubMed  Google Scholar 

  • Kuzmin A, Johansson B, Zvartau EE, Fredholm BB (1999) Caffeine, acting on adenosine A(1) receptors, prevents the extinction of cocaine-seeking behavior in mice. J Pharmacol Exp Ther 290:535–542

    CAS  PubMed  Google Scholar 

  • Lahiri S, Mitchell CH, Reigada D, Roy A, Cherniack NS (2007) Purines, the carotid body and respiration. Respir Physiol Neurobiol 157:123–129

    Article  CAS  PubMed  Google Scholar 

  • Lam P, Hong CJ, Tsai SJ (2005) Association study of A2a adenosine receptor genetic polymorphism in panic disorder. Neurosci Lett 378:98–101

    Article  CAS  PubMed  Google Scholar 

  • Lambert NA, Teyler TJ (1991) Adenosine depresses excitatory but not fast inhibitory synaptic transmission in area CA1 of the rat hippocampus. Neurosci Lett 122:50–52

    Article  CAS  PubMed  Google Scholar 

  • Landolt HP (2008) Sleep homeostasis: a role for adenosine in humans? Biochem Pharmacol 75:2070–2079

    Article  CAS  PubMed  Google Scholar 

  • Landolt HP, Werth E, Borbély AA, Dijk DJ (1995a) Caffeine intake (200 mg) in the morning affects human sleep and EEG power spectra at night. Brain Res 675:67–74

    Article  CAS  PubMed  Google Scholar 

  • Landolt HP, Dijk DJ, Gaus SE, Borbély AA (1995b) Caffeine reduces low-frequency delta activity in the human sleep EEG. Neuropsychopharmacology 12:229–238

    Article  CAS  PubMed  Google Scholar 

  • Landolt HP, Rétey JV, Tönz K, Gottselig JM, Khatami R, Buckelmüller I, Achermann P (2004) Caffeine attenuates waking and sleep electroencephalographic markers of sleep homeostasis in humans. Neuropsychopharmacology 29:1933–1939

    Article  CAS  PubMed  Google Scholar 

  • Lao LJ, Kumamoto E, Luo C, Furue H, Yoshimura M (2001) Adenosine inhibits excitatory transmission to substantia gelatinosa neurons of the adult rat spinal cord through the activation of presynaptic A(1) adenosine receptor. Pain 94:315–324

    Article  CAS  PubMed  Google Scholar 

  • Lara DR, Dall’Igna OP, Ghisolfi ES, Brunstein MG (2006) Involvement of adenosine in the neurobiology of schizophrenia and its therapeutic implications. Prog Neuropsychopharmacol Biol Psychiat 30:617–629

    Article  CAS  Google Scholar 

  • Larson PS (2008) Deep brain stimulation for psychiatric disorders. Neurotherapeutics 5:50–58

    Article  PubMed  Google Scholar 

  • Latini S, Pedata F (2001) Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem 79:463–484

    Article  CAS  PubMed  Google Scholar 

  • Le Crom S, Prou D, Vernier P (2002) Autocrine activation of adenosine A1 receptors blocks D1A but not D1B dopamine receptor desensitization. J Neurochem 82:1549–1552

    Article  PubMed  Google Scholar 

  • Ledent C, Vaugeois JM, Schiffmann SN, Pedrazzini T, El Yacoubi M, Vanderhaeghen JJ, Costentin J, Heath JK, Vassart G, Parmentier M (1997) Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor. Nature 388:674–678

    Article  CAS  PubMed  Google Scholar 

  • Lee FS, Chao MV (2001) Activation of Trk neurotrophin receptors in the absence of neurotrophins. Proc Natl Acad Sci USA 98:3555–3560

    Article  CAS  PubMed  Google Scholar 

  • Li H, Henry JL (2000) Adenosine receptor blockade reveals N-methyl-D-aspartate receptor- and voltage-sensitive dendritic spikes in rat hippocampal CA1 pyramidal cells in vitro. Neuroscience 100:21–31

    Article  CAS  PubMed  Google Scholar 

  • Li T, Steinbeck JA, Lusardi T, Koch P, Lan JQ, Wilz A Segschneider M, Simon RP, Brustle O, Boison D (2007) Suppression of kindling epileptogenesis by adenosine releasing stem cell derived brain implants. Brain 130:1276–1288

    Article  PubMed  Google Scholar 

  • Limberger N, Späth L, Starke K (1988) Presynaptic alpha 2-adrenoceptor, opioid kappa-receptor and adenosine A1-receptor interaction on noradrenaline release in rabbit brain cortex. Naunyn–Schmiedeberg’s Arch Pharmacol 338:53–61

    CAS  Google Scholar 

  • Listos J, Malec D, Fidecka S (2005) Influence of adenosine receptor agonists on benzodiazepine withdrawal signs in mice. Eur J Pharmacol 523:71–78

    Article  CAS  PubMed  Google Scholar 

  • Listos J, Talarek S, Fidecka S (2008) Adenosine receptor agonists attenuate the development of diazepam withdrawal-induced sensitization in mice. Eur J Pharmacol 588:72–77

    Article  CAS  PubMed  Google Scholar 

  • Liu ZW, Gao XB (2007) Adenosine inhibits activity of hypocretin/orexin neurons by the A1 receptor in the lateral hypothalamus: a possible sleep-promoting effect. J Neurophysiol 97:837–848

    Article  CAS  PubMed  Google Scholar 

  • Lopes LV, Cunha RA, Ribeiro JA (1999a) Cross talk between A(1) and A(2A) adenosine receptors in the hippocampus and cortex of young adult and old rats. J Neurophysiol 82:3196–3203

    CAS  PubMed  Google Scholar 

  • Lopes LV, Cunha RA, Ribeiro JA (1999b) Increase in the number, G protein coupling, and efficiency of facilitatory adenosine A2A receptors in the limbic cortex, but not striatum, of aged rats. J Neurochem 73:1733–1738

    Article  CAS  PubMed  Google Scholar 

  • Lorenzen A, Sebastião AM, Sellink A, Vogt H, Schwabe U, Ribeiro JA, IJzerman AP (1997) Biological activities of N6,C8-disubstituted adenosine derivatives as partial agonists at rat brain adenosine A1 receptors. Eur J Pharmacol 334:299–307

    Article  CAS  PubMed  Google Scholar 

  • Love S, Plaha P, Patel NK, Hotton GR, Brooks DJ, Gill SS (2005) Glial cell line-derived neurotrophic factor induces neuronal sprouting in human brain. Nat Med 11:703–704

    Article  CAS  PubMed  Google Scholar 

  • Lucchi R, Latini S, de Mendonça A, Sebastião AM, Ribeiro JA (1996) Adenosine by activating A1 receptors prevents GABAA-mediated actions during hypoxia in the rat hippocampus. Brain Res 732:261–266

    Article  CAS  PubMed  Google Scholar 

  • Lupica CR, Proctor WR, Dunwiddie TV (1992) Presynaptic inhibition of excitatory synaptic transmission by adenosine in rat hippocampus: analysis of unitary EPSP variance measured by whole-cell recording. J Neurosci 12:3753–3764

    CAS  PubMed  Google Scholar 

  • Macek TA, Schaffhauser H, Conn PJ (1998) Protein kinase C and A3 adenosine receptor activation inhibit presynaptic metabotropic glutamate receptor (mGluR) function and uncouple mGluRs from GTP-binding proteins. J Neurosci 18:6138–6146

    CAS  PubMed  Google Scholar 

  • Magalhães-Cardoso MT, Pereira MF, Oliveira L, Ribeiro JA, Cunha RA, Correia-de-Sá P (2003) Ecto-AMP deaminase blunts the ATP-derived adenosine A2A receptor facilitation of acetylcholine release at rat motor nerve endings. J Physiol 549:399–408

    Article  PubMed  CAS  Google Scholar 

  • Mahan LC, McVittie LD, Smyk-Randall EM, Nakata H, Monsma FJ Jr, Gerfen CR, Sibley DR (1991) Cloning and expression of an A1 adenosine receptor from rat brain. Mol Pharmacol 40:1–7

    CAS  PubMed  Google Scholar 

  • Maia L, de Mendonça A (2002) Does caffeine intake protect from Alzheimer’s disease? Eur J Neurol 9:1–6

    Article  Google Scholar 

  • Manzoni O, Pujalte D, Williams J, Bockaert J (1998) Decreased presynaptic sensitivity to adenosine after cocaine withdrawal. J Neurosci 18:7996–8002

    CAS  PubMed  Google Scholar 

  • Martini C, Tuscano D, Trincavelli ML, Cerrai E, Bianchi M, Ciapparelli A, Alessio L, Novelli L, Catena M, Lucacchini A, Cassano GB, Dell’Osso L (2006) Upregulation of A2A adenosine receptors in platelets from patients affected by bipolar disorders under treatment with typical antipsychotics. J Psychiat Res 40:81–88

    Article  PubMed  Google Scholar 

  • Maurice T, Lockhart BP, Privat A (1996) Amnesia induced in mice by centrally administered beta-amyloid peptides involves cholinergic dysfunction. Brain Res 706:181–193

    Article  CAS  PubMed  Google Scholar 

  • Maxwell Dl, Fuller RW, Nolop KB, Dixon CM, Hughes JM (1986) Effects of adenosine on ventilatory responses to hypoxia and hypercapnia in humans. J Appl Physiol 61:1762–1766

    Google Scholar 

  • Mayer CA, Haxhiu MA, Martin RJ, Wilson CG (2006) Adenosine A2A receptors mediate GABAergic inhibition of respiration in immature rats. J Appl Physiol 100:91–97

    Article  CAS  PubMed  Google Scholar 

  • Mayfield DR, Larson G, Orona RA, Zahniser NR (1996) Opposing actions of adenosine A2a and dopamine D2 receptor activation on GABA release in the basal ganglia: evidence for an A2a/D2 receptor interaction in globus pallidus. Synapse 22:132–138

    Article  CAS  Google Scholar 

  • Mayfield RD, Jones BA, Miller HA, Simosky JK, Larson GA, Zahniser NR (1999) Modulation of endogenous GABA release by an antagonistic adenosine A1/dopamine D1 receptor interaction in rat brain limbic regions but not basal ganglia. Synapse 33:274–281

    Article  CAS  PubMed  Google Scholar 

  • McGaraughty S, Cowart M, Jarvis MF, Berman RF (2005) Anticonvulsant and antinociceptive actions of novel adenosine kinase inhibitors. Curr Top Med Chem 5:43–58

    Article  CAS  PubMed  Google Scholar 

  • McQueen DS, Ribeiro JA (1981) Effect of adenosine on carotid chemoreceptor activity in the cat. Br J Pharmacol 74:129–136

    CAS  PubMed  Google Scholar 

  • McQueen DS, Ribeiro JA (1986) Pharmacological characterization of the receptor involved in chemoexcitation induced by adenosine. Br J Pharmacol 88:615–620

    CAS  PubMed  Google Scholar 

  • Meyer PT, Elmenhorst D, Boy C, Winz O, Matusch A, Zilles K, Bauer A (2007) Effect of aging on cerebral A1 adenosine receptors: a [18F]CPFPX PET study in humans. Neurobiol Aging 28:1914–1924

    Article  CAS  PubMed  Google Scholar 

  • Mihara T, Mihara K, Yarimizu J, Mitani Y, Matsuda R, Yamamoto H, Aoki S, Akahane A, Iwashita A, Matsuoka N (2007) Pharmacological characterization of a novel, potent adenosine A1 and A2A receptor dual antagonist, 5-[5-amino-3-(4-fluorophenyl)pyrazin-2-yl]-1-isopropylpyridine-2(1H)-one (ASP5854), in models of Parkinson’s disease and cognition. J Pharmacol Exp Ther 323:708–719

    Article  CAS  PubMed  Google Scholar 

  • Mingote S, Font L, Farrar AM, Vontell R, Worden LT, Stopper CM, Port RG, Sink KS, Bunce JG, Chrobak JJ, Salamone JD (2008) Nucleus accumbens adenosine A2A receptors regulate exertion of effort by acting on the ventral striatopallidal pathway. J Neurosci 28:9037–9046

    Article  CAS  PubMed  Google Scholar 

  • Mishina M, Ishiwata K, Kimura Y, Naganawa M, Oda K, Kobayashi S, Katayama Y, Ishii K (2007) Evaluation of distribution of adenosine A2A receptors in normal human brain measured with [11C]TMSX PET. Synapse 61:778–784

    Article  CAS  PubMed  Google Scholar 

  • Miura T, Kimura K (2000) Theophylline-induced convulsions in children with epilepsy. Pediatrics 105:920

    Article  CAS  PubMed  Google Scholar 

  • Mojsilovic-Petrovic J, Jeong GB, Crocker A, Arneja A, David S, Russell DS, Kalb RG (2006) Protecting motor neurons from toxic insult by antagonism of adenosine A2a and Trk receptors. J Neurosci 26:9250–9263

    Article  CAS  PubMed  Google Scholar 

  • Monteiro EC, Ribeiro JA (1987) Ventilatory effects of adenosine mediated by carotid body chemoreceptors in the rat. Naunyn–Schmiedeberg’s Arch Pharmacol 335:143–148

    CAS  Google Scholar 

  • Morelli M, Di Paolo T, Wardas J, Calon F, Xiao D, Schwarzschild MA (2007) Role of adenosine A2A receptors in parkinsonian motor impairment and L-DOPA-induced motor complications. Prog Neurobiol 83:293–309

    Article  CAS  PubMed  Google Scholar 

  • Mori Y, Higuchi M, Masuyama N, Gotoh Y (2004) Adenosine A2A receptor facilitates calcium-dependent protein secretion through the activation of protein kinase A and phosphatidylinositol-3 kinase in PC12 cells. Cell Struct Funct 29:101–110

    Article  CAS  PubMed  Google Scholar 

  • Mortelmans LJ, Van Loo M, De Cauwer HG, Merlevede K (2008) Seizures and hyponatremia after excessive intake of diet coke. Eur J Emerg Med 15:51

    Article  PubMed  Google Scholar 

  • Nikbakht MR, Stone TW (2001) Suppression of presynaptic responses to adenosine by activation of NMDA receptors. Eur J Pharmacol 427:13–25

    Article  CAS  PubMed  Google Scholar 

  • Nishi A, Liu F, Matsuyama S, Hamada M, Higashi H, Nairn AC, Greengard P (2003) Metabotropic mGlu5 receptors regulate adenosine A2A receptor signaling. Proc Natl Acad Sci USA 100:1322–1327

    Article  PubMed  Google Scholar 

  • Ogata T, Nakamura Y, Tsuji K, Shibata T, Kataoka K, Schubert P (1994) Adenosine enhances intracellular Ca2 + mobilization in conjunction with metabotropic glutamate receptor activation by t-ACPD in cultured hippocampal astrocytes. Neurosci Lett 170:5–8

    Article  CAS  PubMed  Google Scholar 

  • Ogata T, Nakamura Y, Schubert P (1996) Potentiated cAMP rise in metabotropically stimulated rat cultured astrocytes by a Ca2 + -related A1/A2 adenosine receptor cooperation. Eur J Neurosci 8:1124–1131

    Article  CAS  PubMed  Google Scholar 

  • O’Kane EM Stone TW (1998) Interactions between adenosine A1 and A2 receptor-mediated responses in the rat hippocampus in vitro. Eur J Pharmacol 362:17–25

    Article  PubMed  Google Scholar 

  • O’Neill C, Nolan BJ, Macari A, O’Boyle KM, O’Connor JJ (2007) Adenosine A1 receptor-mediated inhibition of dopamine release from rat striatal slices is modulated by D1 dopamine receptors. Eur J Neurosci 26:3421–428

    Article  PubMed  Google Scholar 

  • Ortinau S, Laube B, Zimmermann H (2003) ATP inhibits NMDA receptors after heterologous expression and in cultured hippocampal neurons and attenuates NMDA-mediated neurotoxicity. J Neurosci 23:4996–5003

    CAS  PubMed  Google Scholar 

  • Pagonopoulou O, Angelatou F (1992) Reduction of A1 adenosine receptors in cortex, hippocampus and cerebellum in ageing mouse brain. Neuroreport 3:735–737

    Article  CAS  PubMed  Google Scholar 

  • Pan, H.L, Xu Z, Leung E, Eisenach JC (2001) Allosteric adenosine modulation to reduce allodynia. Anesthesiology 95:416–420

    Article  CAS  PubMed  Google Scholar 

  • Patel NK, Bunnage M, Plaha P, Svendsen CN, Heywood P, Gill SS (2005) Intraputamenal infusion of glial cell line-derived neurotrophic factor in PD: a two-year outcome study. Ann Neurol 57:298–302

    Article  CAS  PubMed  Google Scholar 

  • Peterson AL, Nutt JG (2008) Treatment of Parkinson’s disease with trophic factors. Neurotherapeutics 5:270–280

    Article  CAS  PubMed  Google Scholar 

  • Phillis JW (2004) Adenosine and adenine nucleotides as regulators of cerebral blood flow: roles of acidosis, cell swelling, and KATP channels. Crit Rev Neurobiol 16:237–270

    Article  CAS  PubMed  Google Scholar 

  • Phillis JW, Wu PH (1982) Adenosine mediates sedative action of various centrally active drugs. Med Hypotheses 9:361–367

    Article  CAS  PubMed  Google Scholar 

  • Pignataro G, Maysami S, Studer FE, Wilz A, Simon RP, Boison D (2008) Downregulation of hippocampal adenosine kinase after focal ischemia as potential endogenous neuroprotective mechanism. J Cereb Blood Flow Metab 28:17–23

    Article  CAS  PubMed  Google Scholar 

  • Pinto-Duarte A, Coelho JE, Cunha RA, Ribeiro JA, Sebastião AM (2005) Adenosine A2A receptors control the extracellular levels of adenosine through modulation of nucleoside transporters activity in the rat hippocampus. J Neurochem 93:595–604

    Article  CAS  PubMed  Google Scholar 

  • Pintor A, Pèzzola A, Reggio R, Quarta D, Popoli P (2000) The mGlu5 receptor agonist CHPG stimulates striatal glutamate release: possible involvement of A2A receptors. Neuroreport 11:3611–3614

    Article  CAS  PubMed  Google Scholar 

  • Poleszak E, Malec D (2003) Effects of adenosine receptor agonists and antagonists in amphetamine-induced conditioned place preference test in rats. Pol J Pharmacol 55:319–26

    CAS  PubMed  Google Scholar 

  • Poon A, Sawynok J (1999) Antinociceptive and anti-inflammatory properties of an adenosine kinase inhibitor and an adenosine deaminase inhibitor. Eur J Pharmacol 384:123–138

    Article  CAS  PubMed  Google Scholar 

  • Popoli P, Minghetti L, Tebano MT, Pintor A, Domenici MR, Massotti M (2004) Adenosine A2A receptor antagonism and neuroprotection: mechanisms, lights, and shadows. Crit Rev Neurobiol 16:99–106

    Article  CAS  PubMed  Google Scholar 

  • Popoli P, Blum D, Martire A, Ledent C, Ceruti S, Abbracchio MP (2007) Functions, dysfunctions and possible therapeutic relevance of adenosine A2A receptors in Huntington’s disease. Prog Neurobiol 81:331–348

    Article  CAS  PubMed  Google Scholar 

  • Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjorkum AA, Greene RW, McCarley RW (1997) Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 276:1265–1268

    Article  CAS  PubMed  Google Scholar 

  • Porkka-Heiskanen T, Alanko L, Kalinchuk A, Stenberg D (2002) Adenosine and sleep. Sleep Med Rev 6:321–332

    Article  PubMed  Google Scholar 

  • Pousinha PA, Diogenes MJ, Ribeiro JA, Sebastião AM (2006) Triggering of BDNF facilitatory action on neuromuscular transmission by adenosine A2A receptors. Neurosci Lett 404:143–147

    Article  CAS  PubMed  Google Scholar 

  • Prediger RD, Batista LC, Takahashi RN (2004) Adenosine A1 receptors modulate the anxiolytic-like effect of ethanol in the elevated plus-maze in mice. Eur J Pharmacol 499:147–154

    Article  CAS  PubMed  Google Scholar 

  • Prediger RD, da Silva GE, Batista LC, Bittencourt AL, Takahashi RN (2006) Activation of adenosine A1 receptors reduces anxiety-like behavior during acute ethanol withdrawal (hangover) in mice. Neuropsychopharmacology 31:2210–2220

    CAS  PubMed  Google Scholar 

  • Prince DA, Stevens CF (1992) Adenosine decreases neurotransmitter release at central synapses. Proc Natl Acad Sci USA 89:8586–8590

    Article  CAS  PubMed  Google Scholar 

  • Pugliese AM, Latini S, Corradetti R, Pedata F (2003) Brief, repeated, oxygen-glucose deprivation episodes protect neurotransmission from a longer ischemic episode in the in vitro hippocampus: role of adenosine receptors. Br J Pharmacol 140(2):305–14

    Article  CAS  PubMed  Google Scholar 

  • Qian J, Colmers WF, Saggau P (1997) Inhibition of synaptic transmission by neuropeptide Y in rat hippocampal area CA1: modulation of presynaptic Ca2 + entry. J Neurosci 17:8169–8177

    CAS  PubMed  Google Scholar 

  • Rajagopal R, Chen ZY, Lee FS, Chao MV (2004) Transactivation of Trk neurotrophin receptors by G-protein-coupled receptor ligands occurs on intracellular membranes. J Neurosci 24: 6650–6658

    Article  CAS  PubMed  Google Scholar 

  • Rao SS, Mudipalli RS, Remes-Troche JM, Utech CL, Zimmerman B (2007) Theophylline improves esophageal chest pain: a randomized, placebo-controlled study. Am J Gastroenterol 102:930–938

    Article  CAS  PubMed  Google Scholar 

  • Rebola N, Sebastião AM, de Mendonca A, Oliveira CR, Ribeiro JA, Cunha RA (2003) Enhanced adenosine A2A receptor facilitation of synaptic transmission in the hippocampus of aged rats. J Neurophysiol 90:1295–303

    Article  CAS  PubMed  Google Scholar 

  • Rebola N, Lujan R, Cunha RA, Mulle C (2008) Adenosine A2A receptors are essential for long-term potentiation of NMDA-EPSCs at hippocampal mossy fiber synapses. Neuron 57:121–134

    Article  CAS  PubMed  Google Scholar 

  • Rétey JV, Adam M, Gottselig JM, Khatami R, Dürr R, Achermann P, Landolt HP J (2006) Adenosinergic mechanisms contribute to individual differences in sleep deprivation-induced changes in neurobehavioral function and brain rhythmic activity. Neurosci 26:10472–10479

    Article  CAS  Google Scholar 

  • Rétey JV, Adam M, Khatami R, Luhmann UF, Jung HH, Berger W, Landolt HP (2007) A genetic variation in the adenosine A2A receptor gene (ADORA2A) contributes to individual sensitivity to caffeine effects on sleep. Clin Pharmacol Ther 81:692–698

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro JA, Sebastião AM (1986) Adenosine receptors and calcium: basis for proposing a third (A3) adenosine receptor. Prog Neurobiol 26:179–209

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro JA, Sebastião AM (1987) On the role, inactivation and origin of endogenous adenosine at the frog neuromuscular junction. J Physiol 384:571–585

    CAS  PubMed  Google Scholar 

  • Ribeiro JA, Walker J (1973) Action of adenosine triphosphate on endplate potentials recorded from muscle fibres of the rat-diaphragm and frog sartorius. Br J Pharmacol 49:724–725

    CAS  PubMed  Google Scholar 

  • Ribeiro JA, Sá-Almeida AM, Namorado JM (1979) Adenosine and adenosine triphosphate decrease 45Ca uptake by synaptosomes stimulated by potassium. Biochem Pharmacol 28: 1297–1300

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro JA, Sebastião A.M, de Mendonça A (2003) Adenosine receptors in the nervous system: pathophysiological implications. Prog Neurobiol 68:377–392

    Article  Google Scholar 

  • Ritchie K, Carrière I, de Mendonca A, Portet F, Dartigues JF, Rouaud O, Barberger-Gateau P, Ancelin ML (2007) The neuroprotective effects of caffeine: a prospective population study (the Three City Study). Neurology 69:536–545

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues RJ, Alfaro TM, Rebola N, Oliveira CR, Cunha RA (2005) Co-localization and functional interaction between adenosine A(2A) and metabotropic group 5 receptors in glutamatergic nerve terminals of the rat striatum. J Neurochem 92:433–441

    Article  PubMed  CAS  Google Scholar 

  • Roseti C, Martinello K, Fucile S, Piccari V, Mascia A, Di Gennaro G, Quarato PP, Manfredi M, Esposito V, Cantore G, Arcella A, Simonato M, Fredholm BB, Limatola C, Miledi R, Eusebi F (2008) Adenosine receptor antagonists alter the stability of human epileptic GABAA receptors. Proc Natl Acad Sci USA 105:15118–15123

    Article  CAS  PubMed  Google Scholar 

  • Ross GW, Abbott RD, Petrovitch H, Morens DM, Grandinetti A, Tung KH, Tanner CM, Masaki KH, Blanchette PL, Curb JD, Popper JS, White LR (2000) Association of coffee and caffeine intake with the risk of Parkinson disease. JAMA 283:2674–2679

    Article  CAS  PubMed  Google Scholar 

  • Ross CA, Margolis RL, Reading SA, Pletnikov M, Coyle JT (2006) Neurobiology of schizophrenia. Neuron 52:139–153

    Article  CAS  PubMed  Google Scholar 

  • Runold M, Cherniack NS, Prabhakar NR (1990) Effect of adenosine on isolated and superfused cat carotid body activity. Neurosci Lett 113:111–114

    Article  CAS  PubMed  Google Scholar 

  • Salín-Pascual RJ, Valencia-Flores M, Campos RM, Castaño A, Shiromani PJ (2006) Caffeine challenge in insomniac patients after total sleep deprivation. Sleep Med 7:141–145

    Article  PubMed  Google Scholar 

  • Salvatore CA, Jacobson MA, Taylor HE, Linden J, Johnson RG (1993) Molecular cloning and characterization of the human A3 adenosine receptor. Proc Natl Acad Sci USA 90: 10365–10369

    Article  CAS  PubMed  Google Scholar 

  • Sandner-Kiesling A, Li X, Eisenach JC (2001) Morphine-induced spinal release of adenosine is reduced in neuropathic rats. Anesthesiology 95:1455–1459

    Article  CAS  PubMed  Google Scholar 

  • Sattin A, Rall TW (1970) The effect of adenosine and adenine nucleotides on the cyclic adenosine 3, 5-phosphate content of guinea pig cerebral cortex slices. Mol Pharmacol 6:13–23

    CAS  PubMed  Google Scholar 

  • Sawynok J (1998) Adenosine receptor activation and nociception. Eur J Pharmacol 347:1–11

    Article  CAS  PubMed  Google Scholar 

  • Sawynok J (2007) Adenosine and ATP receptors. Handb Exp Pharmacol 177:309–328

    Article  CAS  PubMed  Google Scholar 

  • Sawynok J, Liu XJ (2003) Adenosine in the spinal cord and periphery: release and regulation of pain. Prog Neurobiol 69:313–340

    Article  CAS  PubMed  Google Scholar 

  • Scharfman HE, Hen R (2007) Is more neurogenesis always better? Science 315:336–338

    Article  CAS  PubMed  Google Scholar 

  • Schiffmann SN, Fisone G, Moresco R, Cunha RA, Ferré S (2007) Adenosine A2A receptors and basal ganglia physiology. Prog Neurobiol 83:277–292

    Article  CAS  PubMed  Google Scholar 

  • Schotanus SM, Fredholm BB, Chergui K (2006) NMDA depresses glutamatergic synaptic transmission in the striatum through the activation of adenosine A1 receptors: evidence from knockout mice. Neuropharmacology 51:272–282

    Article  CAS  PubMed  Google Scholar 

  • Schulte-Herbrüggen O, Braun A, Rochlitzer S, Jockers-Scherübl MC, Hellweg R (2007) Neurotrophic factors: a tool for therapeutic strategies in neurological, neuropsychiatric and neuroimmunological diseases? Curr Med Chem 14:2318–2329

    Article  PubMed  Google Scholar 

  • Sebastião AM, Ribeiro JA (1985) Enhancement of transmission at the frog neuromuscular junction by adenosine deaminase: evidence for an inhibitory role of endogenous adenosine on neuromuscular transmission. Neurosci Lett 62:267–270

    Article  PubMed  Google Scholar 

  • Sebastião AM, Ribeiro JA (1990) Interactions between adenosine and phorbol esters or lithium at the frog neuromuscular junction. Br J Pharmacol 100:55–62

    PubMed  Google Scholar 

  • Sebastião AM, Ribeiro JA (1992) Evidence for the presence of excitatory A2 adenosine receptors in the rat hippocampus. Neurosci Lett 138:41–44

    Article  PubMed  Google Scholar 

  • Sebastião AM, Ribeiro JA (1996) Adenosine A2 receptor-mediated excitatory actions on the nervous system. Prog Neurobiol 48:167–189

    Article  PubMed  Google Scholar 

  • Sebastião AM, Ribeiro JA (2000) Fine-tuning neuromodulation by adenosine. Trends Pharmacol Sci 21:341–346

    Article  PubMed  Google Scholar 

  • Sebastião AM, Lucchi R, Latini S, De Mendonça A, Ribeiro JA (1996) Functional negative interaction between adenosine (A1) and GABA (GABAA) during hypoxia in the rat hippocampus. In: Okada Y (ed) The role of adenosine in the nervous system. Elsevier, Amesterdam, pp 177–184

    Google Scholar 

  • Sebastião AM, Cunha RA, de Mendonça A, Ribeiro JA (2000a) Modification of adenosine modulation of synaptic transmission in the hippocampus of aged rats. Br J Pharmacol 131:1629–1634

    Article  PubMed  Google Scholar 

  • Sebastião AM, Macedo MP, Ribeiro JA (2000b) Tonic activation of A(2A) adenosine receptors unmasks, and of A(1) receptors prevents, a facilitatory action of calcitonin gene-related peptide in the rat hippocampus. Br J Pharmacol 129:374–380

    Article  PubMed  Google Scholar 

  • Sebastião AM, de Mendonça A, Moreira T, Ribeiro JA (2001) Activation of synaptic NMDA receptors by action potential-dependent release of transmitter during hypoxia impairs recovery of synaptic transmission on reoxygenation. J Neurosci 21:8564–8571

    PubMed  Google Scholar 

  • Selley DE, Cassidy MP, Martin BR, Sim-Selley LJ (2004) Long-term administration of Delta9-tetrahydrocannabinol desensitizes CB1-, adenosine A1-, and GABAB-mediated inhibition of adenylyl cyclase in mouse cerebellum. Mol Pharmacol 66:1275–1284

    Article  CAS  PubMed  Google Scholar 

  • Seta KA, Millhorn DE (2004) Functional genomics approach to hypoxia signaling. J Appl Physiol 96:765–773

    Article  CAS  PubMed  Google Scholar 

  • Shahraki A, Stone TW (2003) Interactions between adenosine and metabotropic glutamate receptors in the rat hippocampal slice. Br J Pharmacol 138:1059–1068

    Article  CAS  PubMed  Google Scholar 

  • Shapiro RE (2007) Caffeine and headaches. Neurol Sci 28(Suppl 2):S179–S183

    Article  PubMed  Google Scholar 

  • Silinsky EM (1975) On the association between transmitter secretion and the release of adenine nucleotides from mammalian motor nerve terminals. J Physiol 247:145–162

    CAS  PubMed  Google Scholar 

  • Simonato M, Tongiorgi E, Kokaia M (2006) Angels and demons: neurotrophic factors and epilepsy. Trends Pharmacol Sci 27:631–638

    Article  CAS  PubMed  Google Scholar 

  • Sjölund KF, Segerdahl M, Sollevi (1999) Adenosine reduces secondary hyperalgesia in two human models of cutaneous inflammatory pain. Anesth Analg 88:605–610

    Article  PubMed  Google Scholar 

  • Sollevi A, Belfrage M, Lundeberg T, Segerdahl M, Hansson P (1995) Systemic adenosine infusion: a new treatment modality to alleviate neuropathic pain. Pain 61:155–158

    Article  CAS  PubMed  Google Scholar 

  • Soria G, Castañé A, Berrendero F, Ledent C, Parmentier M, Maldonado R, Valverde O (2004) Adenosine A2A receptors are involved in physical dependence and place conditioning induced by THC. Eur J Neurosci 20:2203–2213

    Article  PubMed  Google Scholar 

  • Soria G, Castañé A, Ledent C, Parmentier M, Maldonado R, Valverde O (2006) The lack of A2A adenosine receptors diminishes the reinforcing efficacy of cocaine. Neuropsychopharmacology 31:978–987

    Article  CAS  PubMed  Google Scholar 

  • Sperlágh B, Zsilla G, Baranyi M, Illes P, Vizi ES (2007) Purinergic modulation of glutamate release under ischemic-like conditions in the hippocampus. Neuroscience 149:99–111

    Article  PubMed  CAS  Google Scholar 

  • Spyer KM, Thomas T (2000) A role for adenosine in modulating cardiorespiratory responses: a mini-review. Brain Res Bull 53:121–124

    Article  CAS  PubMed  Google Scholar 

  • Stevens B, Porta S, Haak LL, Gallo V, Fields RD (2002) Adenosine: a neuron-glial transmitter promoting myelination in the CNS in response to action potentials. Neuron 36:855–868

    Article  CAS  PubMed  Google Scholar 

  • Stevens B, Ishibashi T, Chen JF, Fields RD (2004) Adenosine: an activity-dependent axonal signal regulating MAP kinase and proliferation in developing Schwann cells. Neuron Glia Biol 1: 23–34

    Article  PubMed  Google Scholar 

  • Stone TW, Collis MG, Williams M, Miller LP, Karasawa A, Hillaire-Buys D (1995) Adenosine: some therapeutic applications and prospects. In: Cuello AC, Collier B (eds) Pharmacological sciences: perspectives for research and therapy in the late 1990s. Birkhäuser, Basel, pp 303–309

    Google Scholar 

  • Studer FE, Fedele DE, Marowsky A, Schwerdel C, Wernli K, Vogt K, Fritschy J-M, Boison D (2006) Shift of adenosine kinase expression from neurons to astrocytes during postnatal development suggests dual functionality of the enzyme. Neuroscience 142:125–137

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Namba K, Tsuga H, Nakata H (2006) Regulation of pharmacology by hetero-oligomerization between A1 adenosine receptor and P2Y2 receptor. Biochem Biophys Res Commun 351:559–565

    Article  CAS  PubMed  Google Scholar 

  • Svenningsson P, Nomikos GG, Fredholm BB (1995) Biphasic changes in locomotor behavior and in expression of mRNA for NGFI-A and NGFI-B in rat striatum following acute caffeine administration. J Neurosci 15:7612–24

    CAS  PubMed  Google Scholar 

  • Svenningsson P, Hall H, Sedvall G, Fredholm BB (1997) Distribution of adenosine receptors in the postmortem human brain: an extended autoradiographic study. Synapse 27:322–335

    Article  CAS  PubMed  Google Scholar 

  • Sylvén C, Beermann B, Kaijser L, Jonzon B (1990) Nicotine enhances angina pectoris-like pain and atrioventricular blockade provoked by intravenous bolus of adenosine in healthy volunteers. J Cardiovasc Pharmacol 16:962–965

    Article  PubMed  Google Scholar 

  • Tebano MT, Pintor A, Frank C, Domenici MR, Martire A, Pepponi R, Potenza RL, Grieco R, Popoli P (2004) Adenosine A2A receptor blockade differentially influences excitotoxic mechanisms at pre- and postsynaptic sites in the rat striatum. J Neurosci Res 77:100–107

    Article  CAS  PubMed  Google Scholar 

  • Tebano MT, Martire A, Potenza RL, Grò C, Pepponi R, Armida M, Domenici MR, Schwarzschild MA, Chen JF, Popoli P (2008) Adenosine A(2A) receptors are required for normal BDNF levels and BDNF-induced potentiation of synaptic transmission in the mouse hippocampus. J Neurochem 104:279–286

    CAS  PubMed  Google Scholar 

  • Thakkar MM, Engemann SC, Walsh KM, Sahota PK (2008) Adenosine and the homeostatic control of sleep: effects of A1 receptor blockade in the perifornical lateral hypothalamus on sleep-wakefulness. Neuroscience 153:875–880

    Article  CAS  PubMed  Google Scholar 

  • Thevananther S, Rivera A, Rivkees SA (2001) A1 adenosine receptor activation inhibits neurite process formation by Rho kinase-mediated pathways. Neuroreport 12:3057–3063

    Article  CAS  PubMed  Google Scholar 

  • Thorsell A, Johnson J, Heilig M (2007) Effect of the adenosine A2a receptor antagonist 3,7-dimethyl-propargylxanthine on anxiety-like and depression-like behavior and alcohol consumption in Wistar Rats. Alcohol Clin Exp Res 31:1302–1307

    Article  CAS  PubMed  Google Scholar 

  • Toda S, Alguacil LF, Kalivas PW (2003) Repeated cocaine administration changes the function and subcellular distribution of adenosine A1 receptor in the rat nucleus accumbens. J Neurochem 87:1478–1484

    Article  CAS  PubMed  Google Scholar 

  • Tom NJ, Roberts PJ (1999) Group 1 mGlu receptors elevate [Ca2 + ] in rat cultured cortical type 2 astrocytes: [Ca2 + ] synergy with adenosine A1 receptors. Neuropharmacology 38:1511–1517

    Article  Google Scholar 

  • Tonazzini I, Trincavelli ML, Storm-Mathisen J, Martini C, Bergersen LH (2007) Co-localization and functional cross-talk between A1 and P2Y1 purine receptors in rat hippocampus. Eur J Neurosci 26:890–902

    Article  CAS  PubMed  Google Scholar 

  • Tonazzini I, Trincavelli ML, Montali M, Martini C (2008) Regulation of A1 adenosine receptor functioning induced by P2Y1 purinergic receptor activation in human astroglial cells. J Neurosci Res 86:2857–2866

    Article  CAS  PubMed  Google Scholar 

  • Uauy R, Shapiro DL, Smith B, Warshaw JB (1975) Treatment of severe apnea in prematures with orally administered theophylline. Pediatrics 55:595–598

    CAS  PubMed  Google Scholar 

  • Uematsu T, Kozawa O, Matsuno H, Niwa M, Yoshikoshi H, Oh-uchi M, Kohno K, Nagashima S, Kanamaru M (2000) Pharmacokinetics and tolerability of intravenous infusion of adenosine (SUNY4001) in healthy volunteers. Br J Clin Pharmacol 50:177–181

    Article  CAS  PubMed  Google Scholar 

  • Uhlhaas PJ, Singer W (2006) Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52:155–168

    Article  CAS  PubMed  Google Scholar 

  • Ulugol A, Karadag HC, Tamer M, Firat Z, Aslantas A, Dokmeci I (2002) Involvement of adenosine in the anti-allodynic effect of amitriptyline in streptozotocin-induced diabetic rats. Neurosci Lett 328:129–132

    Article  CAS  PubMed  Google Scholar 

  • van Calker D, Müller M, Hamprecht B (1979) Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem 33:999–1005

    Article  PubMed  Google Scholar 

  • Vaz S, Cristóvão-Ferreira S, Ribeiro JA, Sebastiao AM (2008) Brain-derived neurotrophic factor inhibits GABA uptake by the rat hippocampal nerve terminals. Brain Res 1219:19–25

    Article  CAS  PubMed  Google Scholar 

  • Wang JH, Ma YY, van den Buuse M (2006) Improved spatial recognition memory in mice lacking adenosine A2A receptors. Exp Neurol 199:438–445

    Article  CAS  PubMed  Google Scholar 

  • Watt AH, Reid PG, Stephens MR, Routledge PA (1987) Adenosine-induced respiratory stimulation in man depends on site of infusion. Evidence for an action on the carotid body? Br J Clin Pharmacol 23:486–490

    CAS  PubMed  Google Scholar 

  • Weerts EM, Griffiths RR (2003) The adenosine receptor antagonist CGS15943 reinstates cocaine-seeking behavior and maintains self-administration in baboons. Psychopharmacology 168: 155–163

    Article  CAS  PubMed  Google Scholar 

  • Wiese S, Jablonka S, Holtmann B, Orel N, Rajagopal R, Chao MV, Sendtner M (2007) Adenosine receptor A2A-R contributes to motoneuron survival by transactivating the tyrosine kinase receptor TrkB. Proc Natl Acad Sci USA 104(43):17210–17215

    Article  CAS  PubMed  Google Scholar 

  • Wilz A, Pritchard EM, Li T, Lan JQ, Kaplan DL, Boison D (2008) Silk polymer-based adenosine release: therapeutic potential for epilepsy. Biomaterials 29:3609–3616

    Article  CAS  PubMed  Google Scholar 

  • Winder DG, Conn PJ (1993) Activation of metabotropic glutamate receptors increases cAMP accumulation in hippocampus by potentiating responses to endogenous adenosine. J Neurosci 13:38–44

    CAS  PubMed  Google Scholar 

  • Wirkner K, Assmann H, Köles L, Gerevich Z, Franke H, Nörenberg W, Boehm R, Illes P (2000) Inhibition by adenosine A2A receptors of NMDA but not AMPA currents in striatal neurons. Br J Pharmacol 130:259–269

    Article  CAS  PubMed  Google Scholar 

  • Wirkner K, Gerevich Z, Krause T, Günther A, Köles L, Schneider D, Nörenberg W, Illes P (2004) Adenosine A2A receptor-induced inhibition of NMDA and GABAA receptor-mediated synaptic currents in a subpopulation of rat striatal neurons. Neuropharmacology 46:994–1007

    Article  CAS  PubMed  Google Scholar 

  • Worley PF, Baraban JM, McCarren M, Snyder SH, Alger BE (1987) Cholinergic phosphatidylinositol modulation of inhibitory, G protein-linked neurotransmitter actions: electrophysiological studies in rat hippocampus. Proc Natl Acad Sci USA 84:3467–3471

    Article  CAS  PubMed  Google Scholar 

  • Wu WP, Hao JX, Halldner L, Lövdahl C, DeLander GE, Wiesenfeld-Hallin Z, Fredholm BB, Xu XJ (2005) Increased nociceptive response in mice lacking the adenosine A1 receptor. Pain 113:395–404

    Article  CAS  PubMed  Google Scholar 

  • Yamagata K, Hakata K, Maeda A, Mochizuki C, Matsufuji H, Chino M, Yamori Y (2007) Adenosine induces expression of glial cell line-derived neurotrophic factor (GDNF) in primary rat astrocytes. Neurosci Res 59:467–474

    Article  CAS  PubMed  Google Scholar 

  • Yao L, Fan P, Jiang Z, Mailliard WS, Gordon AS, Diamond I (2003) Addicting drugs utilize a synergistic molecular mechanism in common requiring adenosine and Gi-beta gamma dimers. Proc Natl Acad Sci USA 2003 100:14379–14384

    Article  CAS  PubMed  Google Scholar 

  • Yao L, McFarland K, Fan P, Jiang Z, Ueda T, Diamond I (2006) Adenosine A2a blockade prevents synergy between mu-opiate and cannabinoid CB1 receptors and eliminates heroin-seeking behavior in addicted rats. Proc Natl Acad Sci USA 103:7877–7882

    Article  CAS  PubMed  Google Scholar 

  • Yoon K-W, Rothman SM (1991) Adenosine inhibits excitatory but not inhibitory synaptic transmission in the hippocampus. J Neurosci 11:1375–1380

    CAS  PubMed  Google Scholar 

  • Yoshioka K, Hosoda R, Kuroda Y, Nakata H (2002) Hetero-oligomerization of adenosine A1 receptors with P2Y1 receptors in rat brains. FEBS Lett 531:299–303

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Neimat JS (2008) The treatment of movement disorders by deep brain stimulation. Neurotherapeutics 5:26–36

    Article  CAS  PubMed  Google Scholar 

  • Zeraati M, Mirnajafi-Zadeh J, Fathollahi Y, Namvar S, Rezvani ME (2006) Adenosine A1 and A2A receptors of hippocampal CA1 region have opposite effects on piriform cortex kindled seizures in rats. Seizure 15:41–48

    Article  PubMed  Google Scholar 

  • Zhang C, Schmidt JT (1999) Adenosine A1 and class II metabotropic glutamate receptors mediate shared presynaptic inhibition of retinotectal transmission. J Neurophysiol 82:2947–2955

    CAS  PubMed  Google Scholar 

  • Zhou QY, Li C, Olah ME, Johnson RA, Stiles GL, Civelli O (1992) Molecular cloning and characterization of an adenosine receptor: the A3 adenosine receptor. Proc Natl Acad Sci USA 89:7432–7436

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann H (2006) Ectonucleotidases in the nervous system. Novartis Found Symp 276: 113–128

    Article  CAS  PubMed  Google Scholar 

  • Zuccato C, Cattaneo E (2007) Role of brain-derived neurotrophic factor in Huntington’s disease. Prog Neurobiol 81:294–330

    Article  CAS  PubMed  Google Scholar 

  • Zuccato C, Ciammola A, Rigamonti D, Leavitt BR, Goffredo D, Conti L, MacDonald ME, Friedlander RM, Silani V, Hayden MR, Timmusk T, Sipione S, Cattaneo E (2001) Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 293:493–498

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work in the authors’ laboratory is supported by research grants from Fundação para a Ciência e Tecnologia (FCT), Gulbenkian Foundation and the European Union (COST B30).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquim A. Ribeiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sebastião, A.M., Ribeiro, J.A. (2009). Adenosine Receptors and the Central Nervous System. In: Wilson, C., Mustafa, S. (eds) Adenosine Receptors in Health and Disease. Handbook of Experimental Pharmacology, vol 193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89615-9_16

Download citation

Publish with us

Policies and ethics