Skip to main content

Visceral Pain: The Neurophysiological Mechanism

  • Chapter
  • First Online:
Book cover Sensory Nerves

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 194))

Abstract

The mechanism of visceral pain is still less understood compared with that of somatic pain. This is primarily due to the diverse nature of visceral pain compounded by multiple factors such as sexual dimorphism, psychological stress, genetic trait, and the nature of predisposed disease. Due to multiple contributing factors there is an enormous challenge to develop animal models that ideally mimic the exact disease condition. In spite of that, it is well recognized that visceral hypersensitivity can occur due to (1) sensitization of primary sensory afferents innervating the viscera, (2) hyperexcitability of spinal ascending neurons (central sensitization) receiving synaptic input from the viscera, and (3) dysregulation of descending pathways that modulate spinal nociceptive transmission. Depending on the type of stimulus condition, different neural pathways are involved in chronic pain. In early-life psychological stress such as maternal separation, chronic pain occurs later in life due to dysregulation of the hypothalamic–pituitary–adrenal axis and significant increase in corticotrophin releasing factor (CRF) secretion. In contrast, in early-life inflammatory conditions such as colitis and cystitis, there is dysregulation of the descending opioidergic system that results excessive pain perception (i.e., visceral hyperalgesia). Functional bowel disorders and chronic pelvic pain represent unexplained pain that is not associated with identifiable organic diseases. Often pain overlaps between two organs and approximately 35% of patients with chronic pelvic pain showed significant improvement when treated for functional bowel disorders. Animal studies have documented that two main components such as (1) dichotomy of primary afferent fibers innervating two pelvic organs and (2) common convergence of two afferent fibers onto a spinal dorsal horn are contributing factors for organ-to-organ pain overlap. With reports emerging about the varieties of peptide molecules involved in the pathological conditions of visceral pain, it is expected that better therapy will be achieved relatively soon to manage chronic visceral pain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abelli L, Conte B, Somma V, Maggi CA, Giulaini S, Meli A (1989) A method of studying pain arising from the urinary bladder in conscious, freely-moving rats. J Urol 141:148–151

    PubMed  CAS  Google Scholar 

  • Akbar A, Yiangou Y, Facer P, Walters JR, Anand P, Ghosh S (2008) Increased capsaicin receptor TRPV1 expressing sensory fibres in irritable bowel syndrome and their correlation with abdominal pain. Gut 57(7):923–929

    PubMed  CAS  Google Scholar 

  • Al-Chaer ED, Kawasaki M, Pasricha PJ (2000) A new model of chronic visceral hypersensitivity in adult rats induced by colon irritation during postnatal development. Gastroenterology 119:1276–1285

    PubMed  CAS  Google Scholar 

  • Aldskogius H, Elfvin LG, Forsman CA (1986) Primary sensory afferents in the inferior mesenteric ganglion and related nerves of the guinea pig. An experimental study with anterogradely transported wheat germ agglutinin-horseradish peroxidase conjugate. J Auton Nerv Syst 15:179–190

    PubMed  CAS  Google Scholar 

  • Anand KJ (1998) Clinical importance of pain and stress in preterm neonates. Biol Neonate 73:1–9

    Google Scholar 

  • Anand KJ, Coskun V, Thirvikraman KV, Nemeroff CB, Plotsky PM (1999) Long-term behavioral effects of repetitive pain in neonatal rat pups. Physiol Behav 66:627–637

    Google Scholar 

  • Anand KJ, Runeson B, Jacobson B (2004) Gastric suction at birth associated with long-term risk for functional intestinal disorders in later life. J Pedatr 144:449–454

    Google Scholar 

  • Apostolidis A, Brady CM, Yiangou Y, Davis J, Fowler CJ, Anand P (2005) Capsaicin receptor TRPV1 in urothelium of neurogenic human bladders and effect of intravesical resiniferatoxin. Urology 65:400–405

    PubMed  Google Scholar 

  • Applebaum AE, Vance WH, Coggeshall RE (1980) Segmental localization of sensory cell that innervate the bladder. J Comp Neurol 192:203–209

    PubMed  CAS  Google Scholar 

  • Bahns E, Ernsberger U, Jänig W, Nelke A (1986) Functional characteristics of lumbar visceral afferent from the urinary bladder and urethra in the cat. Pflügers Arch 407:510–518

    Google Scholar 

  • Bahns E, Halsband U, Jänig W (1987) Responses of visceral afferents from the lower urinary tract, colon and anus to mechanical stimulation. Pflugers Arch 410:296–303

    PubMed  CAS  Google Scholar 

  • Banerjee B, Medda BK, Lazarova Z, Bansal N, Shaker R, Sengupta JN (2007) Effect of reflux-induced inflammation on transient receptor potential vanilloid one (TRPV1) expression in primary sensory neurons innervating the oesophagus of rats. Neurogastroenterol Motil 19: 681–691

    PubMed  CAS  Google Scholar 

  • Barber RP, Vaughn JE, Saito K, McLaughlin BJ, Roberts E (1978) GABAergic terminals are presynaptic to primary afferent terminals in the substantia gelatinosa of the rat spinal cord. Brain Res 141:35–55

    PubMed  CAS  Google Scholar 

  • Baron R, Jänig W, McLachlan EM (1985a) The afferent and sympathetic components of the lumbar spinal outflow to the colon and pelvic organs in the cat. I. The hypogastric nerve. J Comp Neurol 238:135–146

    PubMed  CAS  Google Scholar 

  • Baron R, Jänig W, McLachlan EM (1985b) The afferent and sympathetic components of the lumbar spinal outflow to the colon and pelvic organs in the cat. II. The lumbar splanchnic nerves. J Comp Neurol 238:147–157

    PubMed  CAS  Google Scholar 

  • Barreau F, Cartier C, Ferrier L, Fioramonti J, Bueno L (2004a) Nerve growth factor mediates alterations of colonic sensitivity and mucosal barrier induced by neonatal stress in rats. Gastroenterology 127:524–534

    PubMed  CAS  Google Scholar 

  • Barreau F, Ferrier L, Fioramonti J, Bueno L (2004b) Neonatal maternal deprivation triggers long term alterations in colonic epithelial barrier and mucosal immunity in rats. Gut 53:501–506

    PubMed  CAS  Google Scholar 

  • Barreau F, Ferrier L, Fioramonti J, Bueno L (2007) New insight in the etiology and pathophysiology of irritable bowel syndrome: contribution of neonatal stress models. Pediatr Res 62:240–245

    PubMed  Google Scholar 

  • Berkley KJ, Robbins A, Sato Y (1988) Afferent fibers supplying the uterus in the rat. J Neurophysiol 59:142–163

    PubMed  CAS  Google Scholar 

  • Berkley KJ, Hotta H, Robbins A, Sato Y (1990) Functional properties of afferent fibers supplying reproductive and other pelvic organs in pelvic nerve of female rat. J Neurophysiol 63(2): 256–272

    PubMed  CAS  Google Scholar 

  • Berkley KJ, Robbins A, Sato Y (1993) Functional differences between afferent fibers in the hypogastric and pelvic nerves innervating female reproductive organs in the rat. J Neurophysiol 69:533–544

    PubMed  CAS  Google Scholar 

  • Berkley KJ, Wood E, Scofield SL, Little M (1995) Behavioral responses to uterine or vaginal distension in the rat. Pain 61:121–31

    PubMed  CAS  Google Scholar 

  • Berthoud HR, Patterson LM, Neumann F, Neuhuber WL (1997) Distribution and structure of vagal afferent intraganglionic laminar endings (IGLEs) in the rat gastrointestinal tract. Anat Embryol 195:183–1891

    PubMed  CAS  Google Scholar 

  • Berthoud HR, Lynn PA, Blackshaw LA (2001) Vagal and spinal mechanosensors in the rat stomach and colon have multiple receptive fields. Am J Physiol 280:R1371–R1381

    CAS  Google Scholar 

  • Bessou P, Perl ER (1966) A movement receptor of the small intestine. J Physiol Lond 182:404–426

    PubMed  CAS  Google Scholar 

  • Bielefeldt K, Lamb K, Gebhart GF (2006) Convergence of sensory pathways in the development of somatic and visceral hypersensitivity. Am J Physiol Gastrointest Liver Physiol 291:G658–G665

    PubMed  CAS  Google Scholar 

  • Birder LA, Kiss S, de Groat WC, Lecci A, Maggi CA (2003) Effect of nepadutant, a neurokinin 2 tachykinin receptor antagonist, on immediate-early gene expression after trinitrobenzene sulfonic acid-induced colitis in the rat. J Pharmacol Exp Ther 304:272–276

    PubMed  CAS  Google Scholar 

  • Bjorling DE, Elkahwaji JE, Bushman W, Janda LM, Boldon K, Hopkins WJ, Wang ZY (2007) Acute acrolein-induced cystitis in mice. BJU Int 99:1523–1529

    PubMed  CAS  Google Scholar 

  • Bloomfield AL, Polland WS (1931) Experimental referred pain from the gastrointestinal tract. Part II. Stomach, duodenum and colon. J Clin Invest 10:453–473

    PubMed  CAS  Google Scholar 

  • Blumberg H, Haupt P, Jänig W, Kohler W (1983) Encoding of visceral noxious stimuli in the discharge patterns of visceral afferent fibers from the colon. Pflugers Arch 398:33–40

    PubMed  CAS  Google Scholar 

  • Bolser DC, DeGennaro FC, O'Reilly S, Chapman RW, Kreutner W, Egan RW, Hey JA (1994) Peripheral and central site of action of GABA-B agonists to inhibit the cough reflex in the cat and guineapig. Br J Pharmacol 113:1344–1348

    PubMed  CAS  Google Scholar 

  • Bors EH, Blinn KA (1957) Spinal reflex activity from the vesical mucosa in paraplegic patients. AMA Arch Neurol Psychiatry 78:339–354

    PubMed  CAS  Google Scholar 

  • Boucher M, Meen M, Codron JP, Coudore F, Kemeny JL, Eschalier A (2000) Cyclophosphamide-induced cystitis in freely-moving conscious rats: behavioral approach to a new model of visceral pain. J Urol 164:203–208

    PubMed  CAS  Google Scholar 

  • Bradesi S, Eutamene H, Garcia-Villar R, Fioramonti J, Bueno L (2003) Stress-induced visceral hypersensitivity in female rats is estrogen-dependent and involves tachykinin NK1 receptors. Pain 102:227–234

    PubMed  CAS  Google Scholar 

  • Bradesi S, Lao L, McLean PG, Winchester WJ, Lee K, Hicks GA, Mayer EA (2007) Dual role of 5-HT3 receptors in a rat model of delayed stress-induced visceral hyperalgesia. Pain 130:56–65

    PubMed  CAS  Google Scholar 

  • Brierley SM, Jones RCW, Gebhart GF, Blackshaw LA (2004) Splanchnic and pelvic mechanosensory afferents signal different qualities of colonic stimuli in mice. Gastroenterology 127:166–178

    PubMed  Google Scholar 

  • Brierley SM, Carter R, Jones W 3rd, Xu L, Robinson DR, Hicks GA, Gebhart GF, Blackshaw LA (2005a) Differential chemosensory function and receptor expression of splanchnic and pelvic colonic afferents in mice. J Physiol 567:267–281

    PubMed  CAS  Google Scholar 

  • Brierley SM, Jones RC 3rd, Xu L, Gebhart GF, Blackshaw LA (2005b) Activation of splanchnic and pelvic colonic afferents by bradykinin in mice. Neurogastroenterol Motil 17:854–862

    PubMed  CAS  Google Scholar 

  • Burnstock G (2002) Potential therapeutic targets in the rapidly expanding field of purinergic signalling. Clin Med 2:45–53

    PubMed  CAS  Google Scholar 

  • Burnstock G (2006) Purinergic P2 receptors as targets for novel analgesics. Pharmacol Ther 110:433–454

    PubMed  CAS  Google Scholar 

  • Caldarella MP, Giamberardino MA, Sacco F, Affaitati G, Milano A, Lerza R, Balatsinou C, Laterza F, Pierdomenico SD, Cuccurullo F, Neri M (2006) Sensitivity disturbances in patients with irritable bowel syndrome and fibromyalgia. Am J Gastroenterol 101:2782–2789

    PubMed  Google Scholar 

  • Caldji C, Tannenbaum B, Sharma S, Francis D, Plotsky PM, Meaney MJ (1998) Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat. Proc Natl Acad Sci USA 95:5335–5340

    PubMed  CAS  Google Scholar 

  • Cameron DM, Brennan TJ, Gebhart GF (2007) Hind paw incision in the rat produces long-lasting colon hypersensitivity. J Pain 9:246–253

    PubMed  Google Scholar 

  • Castroman P, Ness TJ (2001) Vigor of visceromotor responses to urinary bladder distension in rats increases with repeated trials and stimulus intensity. Neurosci Lett 306:97–100

    PubMed  CAS  Google Scholar 

  • Castroman PJ, Ness TJ (2002) Ketamine, an N-methyl-d-aspartate receptor antagonist, inhibits the spinal neuronal responses to distension of the rat urinary bladder. Anesthesiology 96: 1410–1419

    PubMed  CAS  Google Scholar 

  • Caterina MJ, Julius D (2001) The vanilloid receptor: a molecular gateway to the pain pathway. Ann Rev Neurosci 24:487–517

    PubMed  CAS  Google Scholar 

  • Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D (1999) A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398:436–441

    PubMed  CAS  Google Scholar 

  • Cervero F (1982) Afferent activity evoked by natural stimulation of the biliary system in the ferret. Pain 13:137–151

    PubMed  CAS  Google Scholar 

  • Cervero F (1983) Somatic and visceral inputs to the thoracic spinal of the cat. J Physiol 337:51–67

    PubMed  CAS  Google Scholar 

  • Cervero F, Jänig W (1992) Visceral nociceptor: a new world order? Trends Neurosci 15:374–378

    PubMed  CAS  Google Scholar 

  • Cervero F, Sharkey KA (1988) An electrophysiological and anatomical study of intestinal afferent fibers in the rat. J Physiol Lond 401:381–397

    PubMed  CAS  Google Scholar 

  • Cervero F, Tattersall JEH (1986) Somatic and visceral sensory integration in the thoracic spinal cord. Prog Brain Res 67:189–205

    PubMed  CAS  Google Scholar 

  • Chitkara DK, Rawat DJ, Talley NJ (2005) The epidemiology of childhood recurrent abdominal pain in Western countries: a systematic review. Am J Gastrol 100:1868–1875

    Google Scholar 

  • Chitkara DK, van Tilburg MA, Blois-Martin N, Whitehead WE (2008) Early life risk factors that contribute to irritable bowel syndrome in adults: a systematic review. Am J Gastrol 103:765–774

    Google Scholar 

  • Christianson JA, Liang R, Ustinova EE, Davis BM, Fraser MO, Pezzone MA (2007) Convergence of bladder and colon sensory innervation occurs at the primary afferent level. Pain 128:235–243

    PubMed  Google Scholar 

  • Chuang YC, Fraser MO, Yu Y, Chancellor MB, de Groat WC, Yoshimura N (2001) The role of bladder afferent pathways in bladder hyperactivity induced by the intravesical administration of nerve growth factor. J Urol 165:975–979

    PubMed  CAS  Google Scholar 

  • Chung EKY, Zhang X, Li Z, Zhang H, Xu HX, Bian ZX (2007a) Neonatal maternal separation enhances central sensitivity to noxious colorectal distension in rat. Brain Res 1153:68–77

    PubMed  CAS  Google Scholar 

  • Chung EKY, Zhang XJ, Li Z, Xu HX, Sung JJY, Bian ZX (2007b) Visceral hyperalgesia induced by neonatal maternal separation is associated with nerve growth factor-mediated central neural plasticity in rat spinal cord. Neuroscience 149:685–695

    PubMed  CAS  Google Scholar 

  • Clerc N, Mei N (1983) Thoracic esophageal mechanoreceptor connected with fibers following sympathetic pathways. Brain Res Bull 10:1–7

    PubMed  CAS  Google Scholar 

  • Clifton GL, Coggeshall RE, Vance WH, Willis WD (1976) Receptive fields of unmyelinated ventral root afferent fibers. J Physiol Lond 256:573–600

    PubMed  CAS  Google Scholar 

  • Coldwell JR, Phillis BD, Sutherland K, Howarth GS, Blackshaw LA (2007) Increased responsiveness of rat colonic splanchnic afferents to 5-HT after inflammation and recovery. J Physiol 579:203–213

    PubMed  CAS  Google Scholar 

  • Coutinho SV, Meller ST, Gebhart GF (1996) Intracolonic zymosan produces visceral hyperalgesia in the rat that is mediated by spinal NMDA and non-NMDA receptors. Brain Res 736:7–15

    PubMed  CAS  Google Scholar 

  • Coutinho SV, Su X, Sengupta JN, Gebhart GF (2000) Role of sensitized pelvic nerve afferents from the inflamed rat colon in the maintenance of visceral hyperalgesia. Prog Brain Res 129:375–387

    PubMed  CAS  Google Scholar 

  • Coutinho SV, Plotsky PM, Sablad M, Miller JC, Zhou H, Bayati AI, McRoberts JA, Mayer EA (2002) Neonatal maternal separation alters stress-induced responses to viscerosomatic nociceptive stimuli in rat. Am J Physiol 282:G307–G316

    CAS  Google Scholar 

  • Crousillat J, Ranieri F (1980) Mecanorecepteurs splanchniques de la voie biliaire et dedon peritoine. Exp Brain Res 40:146–153

    PubMed  CAS  Google Scholar 

  • Cruz Y, Downie JW (2006) Abdominal muscle activity during voiding in female rats with normal or irritated bladder. Am J Physiol 290:R1436–R1445

    CAS  Google Scholar 

  • Daly D, Rong W, Chess-Williams R, Chapple C, Grundy D (2007) Bladder afferent sensitivity in wild-type and TRPV1 knockout mice. J Physiol 583:663–674

    PubMed  CAS  Google Scholar 

  • Dang K, Lamb K, Cohen M, Bielefeldt K, Gebhart GF (2008) Cyclophosphamide-induced bladder inflammation sensitizes and enhances P2X receptor function in rat bladder sensory neurons. J Neurophysiol 99:49–59

    PubMed  CAS  Google Scholar 

  • Danzebrink RM, Green SA, Gebhart GF (1995) Spinal mu and delta, but not kappa, opioid-receptor agonists attenuate responses to noxious colorectal distension in the rat. Pain 63:39–47

    PubMed  CAS  Google Scholar 

  • DeBerry J, Ness TJ, Robbins MT, Alan R (2007) Inflammation-induced enhancement of the visceromotor reflex to urinary bladder distension: modulation of endogenous opioids and the effects of early-in-life experience with bladder inflammation. J Pain 8:914–923

    PubMed  CAS  Google Scholar 

  • Delafoy L, Raymond F, Doherty AM, Eschalier A, Diop L (2003) Role of nerve growth factor in the trinitrobenzene sulfonic acid-induced colonic hypersensitivity. Pain 105:489–497

    PubMed  CAS  Google Scholar 

  • DinisP, Charrua A, Avelino A, Yaqoob M, Bevan S, Nagy I, Cruz F (2004) Anandamide-evoked activation of vanilloid receptor 1 contributes to the development of bladder hyperreflexia and nociceptive transmission to spinal dorsal horn neurons in cystitis. J Neurosci 24:11253–11263

    PubMed  CAS  Google Scholar 

  • Diop L, Raymond F, Fargeau H, Petoux F, Chovet M, Doherty AM (2002) Pregabalin (CI-1008) inhibits the trinitrobenzene sulfonic acid-induced chronic colonic allodynia in the rat. J Pharmacol Exp Ther 302:1013–1022

    PubMed  CAS  Google Scholar 

  • Dmitrieva N, McMahon SB (1996) Sensitisation of visceral afferents by nerve growth factor in the adult rat. Pain 66:87–97

    PubMed  CAS  Google Scholar 

  • Doran FSA (1967) The site to which pain is referred from the common bile duct in man and implication for the theory of referred pain. Br J Surg 54:599–606

    PubMed  CAS  Google Scholar 

  • Elson CO, Sartor BR, Tennyson GS, Riddel RH (1995) Experimental models of inflammatory bowel disease. Gastroenterology 109:1344–1367

    PubMed  CAS  Google Scholar 

  • Evans JP (1936) Observations on the nerves of supply to the bladder and urethra of the cat, with a study of their action potentials. J Physiol 86:396–414

    PubMed  CAS  Google Scholar 

  • Fall M, Lindström S, Mazières L (1990) A bladder-to-bladder cooling reflex in the cat. J Physiol 427:281–300

    PubMed  CAS  Google Scholar 

  • Fargeas MJ, Theodorou V, More J, Wal JM, Fioramonti J, Bueno L (1995) Boosted systemic immune and local responsiveness after intestinal inflammation in orally sensitized guinea pigs. Gastroenterology 109:53–62

    PubMed  CAS  Google Scholar 

  • Fioramonti J, Gaultier E, Toulouse M, Sanger GJ, Bueno L (2003) Intestinal anti-nociceptive behaviour of NK3 receptor antagonism in conscious rats: evidence to support a peripheral mechanism of action. Neurogastroenterol Motil 15:363–369

    PubMed  CAS  Google Scholar 

  • Fitzerald M (2005) The development of nociceptive circuits. Nat Neurosci 6:507–520

    Google Scholar 

  • Floyd K, Morrison JFB (1974) Splanchnic mechanoreceptor in the dog. Q J Exp Physiol Cogn Med Sci 59:361–366

    PubMed  CAS  Google Scholar 

  • Floyd K, Hick EV, Morrison JFB (1976) Mechanosensitive afferent units in the hypogastric nerve of the cat. J Physiol Lond 259:457–471

    PubMed  CAS  Google Scholar 

  • Floyd K, Hick EV, Koley J, Morrison JFB (1977) The effect of bradykinin on afferent units in intra-abdominal sympathetic nerve trunks. Q J Exp Physiol Cogn Med Sci 62:19–25

    Google Scholar 

  • Fox EA, Phillips RJ, Martinson FA, Baronowsky EA, Powley TL (2000) Vagal afferent innervation of smooth muscle in the stomach and duodenum of the mouse: morphology and topography. J Comp Neurol 428:558–576

    PubMed  CAS  Google Scholar 

  • Friedrich AE, Gebhart GF (2000) Effects of spinal cholecystokinin receptor antagonists on morphine antinociception in a model of visceral pain in the rat. J Pharmacol Exp Ther 292:538–544

    PubMed  CAS  Google Scholar 

  • Friedrich AE, Gebhart GF (2003) Modulation of visceral hyperalgesia by morphine and cholecystokinin from the rat rostroventral medial medulla. Pain 104:93–101

    PubMed  CAS  Google Scholar 

  • FujinoK, Takami Y, Sebastian G, de la Fuente, Ludwig KA, Christopher R, Mantyh MD (2004) Inhibition of the vanilloid receptor subtype-1 attenuates TNBS-colitis. J Gastrointest Surg 8:842–847

    PubMed  Google Scholar 

  • Fujino K, de la Fuente SG, Takami Y, Takahashi T, Mantyh CR (2006) Attenuation of acid-induced oesophagitis in VR-1 deficient mice. Gut 55:34–40

    PubMed  CAS  Google Scholar 

  • Gammon GD, Bronk DW (1935) The discharges of impulses from pacinian corpuscles in the mesentery and its relation to vascular changes. Am J Physiol 114:77–84

    Google Scholar 

  • Gareau MG, Jury J, Yang PC, MacQueen G, Perdue MH (2006) Neonatal maternal separation causes colonic dysfunction in rat pups including impaired host resistance. Pediatr Res 59:83–88

    PubMed  Google Scholar 

  • Gaudreau GA, Plourde V (2003) Role of tachykinin NK1, NK2 and NK3 receptors in the modulation of visceral hypersensitivity in the rat. Neurosci Lett 351:59–62

    PubMed  CAS  Google Scholar 

  • Gaudreau GA, Plourde V (2004) Involvement of N-methyl-d-aspartate (NMDA) receptors in a rat model of visceral hypersensitivity. Behav Brain Res 150:185–189

    PubMed  CAS  Google Scholar 

  • Geirsson G, Lindström S, Fall M (1993) The bladder cooling reflex in man – characteristics and sensitivity to temperature. Br J Urol 71:675–680

    PubMed  CAS  Google Scholar 

  • Geirsson G, Lindström S, Fall M (1999) The bladder cooling reflex and the use of cooling as stimulus to the lower urinary tract. J Urol 162:1890–1896

    PubMed  CAS  Google Scholar 

  • Gershon MD, Liu MT (2007) Serotonin and neuroprotection in functional bowel disorders. Neurogastroenterol Motil 19(Suppl 2):19–24

    PubMed  CAS  Google Scholar 

  • Giamberardino MA, Valente R, de Bigontina P, Vecchiet L (1995) Artificial ureteral calculosis in rats: behavioural characterization of visceral pain episodes and their relationship with referred lumbar muscle hyperalgesia. Pain 61:459–469

    PubMed  CAS  Google Scholar 

  • Greenwood-Van Meerveld B (2007) Importance of 5-hydroxytryptamine receptors on intestinal afferents in the regulation of visceral sensitivity. Neurogastroenterol Motil 19(Suppl 2):13–18

    PubMed  CAS  Google Scholar 

  • Greenwood-Van Meerveld B, Gibson MS, Johnson AC, Venkova K, Sutkowski-Markmann D (2003) NK1 receptor-mediated mechanisms regulate colonic hypersensitivity in the guinea pig. Pharmacol Biochem Behav 74:1005–1013

    PubMed  CAS  Google Scholar 

  • Greenwood-Van Meerveld B, Venkova K, Hicks G, Dennis E, Crowell MD (2006) Activation of peripheral 5-HT receptors attenuates colonic sensitivity to intraluminal distension. Neurogastroenterol Motil 18(1):76–86

    PubMed  CAS  Google Scholar 

  • Grundy D, Scratcherd T (1989) Sensory afferents from the gastrointestinal tract. In: Handbook of physiology; gastrointestinal system, vol 1. American Physiological Society, Bethesda, pp 593–620

    Google Scholar 

  • Häbler J, Jänig W, Koltzenburg M (1988a) A novel type of unmyelinated chemosensitive nociceptor in the acutely inflamed urinary bladder. Agent Act 25:219–212

    Google Scholar 

  • Häbler HJ, Jänig W, Koltzenburg M (1988b) Dichotomizing unmyelinated afferents supplying pelvic viscera and perineum are rare in the sacral segments of the cat. Neurosci Lett 94:119–124

    PubMed  Google Scholar 

  • Häbler J, Jänig W, Koltzenburg M (1990) Activation of unmyelinated afferent fibers by mechanical stimuli and inflammation of the urinary bladder of the cat. J Physiol Lond 425:545–562

    PubMed  Google Scholar 

  • Häbler J, Jänig W, Koltzenburg M (1991) Spinal cord integration of colon function: Afferent and efferent pathways. In: Y Tache, D Wingate (eds) Brain–gut interactions. CRC, Boca Raton, pp 147–160

    Google Scholar 

  • Häbler HJ, Jänig W, Koltzenburg M (1993) Myelinated primary afferents of the sacral spinal cord responding to slow filling and distension of the cat urinary bladder. J Physiol 463:449–460

    PubMed  Google Scholar 

  • Hammer K, Sann H, Pierau FK (1993) Functional properties of mechanosensitive units from the chicken ureter in vitro. Pflugers Arch 425:353–361

    PubMed  CAS  Google Scholar 

  • Hara K, Saito Y, Kirihara Y, Yamada Y, Sakura S, Kosaka Y (1999) The interaction of antinociceptive effects of morphine and GABA receptor agonists within the rat spinal cord. Anesth Analg 89:422–427

    PubMed  CAS  Google Scholar 

  • Haupt P, Jänig W, Kohler W (1983) Response patterns of visceral afferent fibers, supplying the colon, upon chemical and mechanical stimuli. Pflugers Arch 398:41–47

    PubMed  CAS  Google Scholar 

  • Hicks GA, Coldwell JR, Schindler M, Ward PA, Jenkins D, Lynn PA, Humphrey PP, Blackshaw LA (2002) Excitation of rat colonic afferent fibres by 5-HT(3) receptors. J Physiol 544:861–869

    PubMed  CAS  Google Scholar 

  • Hong SK, Han HC, Yoon YW, Chung JM (1993) Response properties of hypogastric afferent fibers supplying the uterus in the cat. Brain Res 622(1–2):215–225

    PubMed  CAS  Google Scholar 

  • Hulsebosch CE, Coggeshall RE (1982) An analysis of the axon populations in the nerve to the pelvic viscera in the rat. J Comp Neurol 211:1–10

    PubMed  CAS  Google Scholar 

  • Iggo A (1955) Tension receptors in the stomach and urinary bladder. J Physiol Lond 128:593–607

    PubMed  CAS  Google Scholar 

  • Isomoto S, Kaibara M, Sakurai-Yamashita Y, Nagayama Y, Uenzo Y, Yano K, Taniyama K (1998) Cloning and tissue distribution of novel splice variants of the rat GABAB receptor. Biochem Biophys Res Comm 253:10–15

    PubMed  CAS  Google Scholar 

  • Jänig W, Koltzenburg M (1990) On the function of spinal primary afferent fibers supplying colon and urinary bladder. J Auton Nerv Syst 30:S89–S96

    PubMed  Google Scholar 

  • Jänig W, Koltzenburg M (1991) Receptive properties of sacral primary afferent neurons supplying the colon. J Neurophysiol 65:1067–1077

    PubMed  Google Scholar 

  • Jänig W, McLachlan EM (1987) Organization of lumbar spinal outflow to distal colon and pelvic organs. Physiol Rev 67:1332–1404

    PubMed  Google Scholar 

  • Jänig W, Morrison JFB (1986) Functional properties of spinal visceral afferents supplying abdominal and pelvic organs, with special emphasis on visceral nociception. In: Visceral sensation. Progress in brain research, vol 67. Elsevier, Amsterdam, pp 87–114

    Google Scholar 

  • Jänig W, Khasar SG, Levine JD, Miao FJ (2000) The role of vagal visceral afferents in the control of nociception. Prog Brain Res 122:273–287

    PubMed  Google Scholar 

  • Ji Y, Traub RJ (2001) Spinal NMDA receptors contribute to neuronal processing of acute noxious and nonnoxious colorectal stimulation in the rat. J Neurophysiol 86:1783–1791

    PubMed  CAS  Google Scholar 

  • Jiang CH, Mazieres L, Lindstr­m S (2002) Cold- and menthol-sensitive C afferents of cat urinary bladder. J Physiol 543:211–220

    Google Scholar 

  • Jones RC III, Xu L, Gebhart GF (2005) The mechanosensitivity of mouse colon afferent fibers and their sensitization by inflammatory mediators require transient receptor potential vanilloid 1 and acid-sensing ion channel 3. J Neurosci 25:10981–10989

    Google Scholar 

  • Jones RCIII, Otsuka E, Wagstrom E, Jensen CS, Price MP, Gebhart GF (2007) Short-term sensitization of colon mechanoreceptors is associated with long-term hypersensitivity to colon distention in the mouse. Gastroenterology 133:184–194

    PubMed  Google Scholar 

  • Joshi SK, Su X, Porreca F, Gebhart GF (2000) Kappa-opioid receptor agonists modulate visceral nociception at a novel, peripheral site of action. J Neurosci 20:5874–5879

    PubMed  CAS  Google Scholar 

  • Joshi SK, Lamb K, Bielefeldt K, Gebhart GF (2003) Arylacetamide kappa-opioid receptor agonists produce a tonic- and use-dependent block of tetrodotoxin-sensitive and -resistant sodium currents in colon sensory neurons. J Pharmacol Exp Ther 307:367–372

    PubMed  CAS  Google Scholar 

  • Julia V, Morteau O, Buéno L (1994) Involvement of neurokinin 1 and 2 receptors in viscerosensitive response to rectal distension in rats. Gastroenterology 107:94–102

    PubMed  CAS  Google Scholar 

  • Julia V, Su X, Buéno L, Gebhart GF (1999) Role of neurokinin 3 receptors on responses to colorectal distention in the rat: electrophysiological and behavioral studies. Gastroenterology 116:1124–1131

    PubMed  CAS  Google Scholar 

  • Kakol-Palm D, Brusberg M, Sand E, Larsson H, Martinez V, Johansson A, von Mentzer B, Påhlman I, Lindström E (2008) Role of tachykinin NK(1) and NK(2) receptors in colonic sensitivity and stress-induced defecation in gerbils. Eur J Pharmacol 582:123–131

    PubMed  CAS  Google Scholar 

  • Kamp EH, Beck DR, Gebhart GF (2001) Combinations of neurokinin receptor antagonists reduce visceral hyperalgesia. J Pharmacol Exp Ther 299:105–113

    PubMed  CAS  Google Scholar 

  • Kirchner A, Birklein F, Stefan H, Handwerker HO (2000) Left vagus nerve stimulation suppresses experimentally induced pain. Neurology 55(8):1167–1171

    PubMed  CAS  Google Scholar 

  • Kolhekar R, Gebhart GF (1994) NMDA and quisqualate modulation of visceral nociception in the rat. Brain Res 651:215–226

    PubMed  CAS  Google Scholar 

  • Kolhekar R, Gebhart GF (1996) Modulation of spinal visceral nociceptive transmission by NMDA receptor activation in the rat. J Neurophysiol 75:2344–2353

    PubMed  CAS  Google Scholar 

  • Kozlowski CM, Green A, Grundy D, Boissonade FM, Bountra C (2000) The 5-HT(3) receptor antagonist alosetron inhibits the colorectal distention induced depressor response and spinal c-fos expression in the anaesthetized rat. Gut 46:474–480

    PubMed  CAS  Google Scholar 

  • Laird JM, Roza C, Cervero F (1996) Spinal dorsal horn neurons responding to noxious distension of the ureter in anesthetized rats. J Neurophysiol 5:3239–3248

    Google Scholar 

  • Laird JM, Olivar T, Roza C, De Felipe C, Hunt SP, Cervero F (2000) Deficits in visceral pain and hyperalgesia of mice with a disruption of the tachykinin NK1 receptor gene. Neuroscience 98:345–352

    PubMed  CAS  Google Scholar 

  • Laird JM, Roza C, De Felipe C, Hunt SP, Cervero F (2001a) Role of central and peripheral tachykinin NK1 receptors in capsaicin-induced pain and hyperalgesia in mice. Pain 90:97–103

    PubMed  CAS  Google Scholar 

  • Laird JM, Olivar T, Lopez-Garcia JA, Maggi CA, Cervero F (2001b) Responses of rat spinal neurons to distension of inflamed colon: role of tachykinin NK2 receptors. Neuropharmacology 40:696–701

    PubMed  CAS  Google Scholar 

  • Lamb K, Zhong F, Gebhart GF, Bielefeldt K (2006) Experimental colitis in mice and sensitization of converging visceral and somatic afferent pathways. Am J Physiol 290:G451–G457

    CAS  Google Scholar 

  • Lennander KB (1901) Ueber die sensibilität der bauchhohle und ueber lokale und allgemeine anasthesie bei bruch und bauchoperationen. Zentralbl Chir 28:200–223

    Google Scholar 

  • Lew WYW, Longhurst JC (1986) Substance-P, 5-hydroxytryptamine, and bradykinin stimulate abdominal visceral afferent fiber endings in cats. Am J Physiol 250:R465–R473

    PubMed  CAS  Google Scholar 

  • Lewis T, Kellgren JH (1939) Observation related to referred pain, viscerosomatic reflexes and other associated phenomena. Clin Sci 4:47–71

    Google Scholar 

  • Li J, McRoberts JA, Ennes HS, Trevisani M, Nicoletti P, Mittal Y, Mayer EA (2006) Experimental colitis modulates the functional properties of NMDA receptors in dorsal root ganglia neurons. Am J Physiol 291:G219–G228

    CAS  Google Scholar 

  • Liang R, Ustinova EE, Patnam R, Fraser MO, Gutkin DW, Pezzone MA (2007) Enhanced expression of mast cell growth factor and mast cell activation in the bladder following the resolution of trinitrobenzene sulfonic acid (TNBS) colitis in female rats. Neurourol Urodyn 226:887–893

    Google Scholar 

  • Lidow MS, Song ZM, Ren K (2001) Long-term effects of short-lasting early local inflammatory insult. Neuroreport 12:399–403

    PubMed  CAS  Google Scholar 

  • Lin C, Al-Chaer ED (2003) Long-term sensitization of primary afferents in adult rats exposed to neonatal colon pain. Brain Res 971:73–82

    PubMed  CAS  Google Scholar 

  • Lindström S, Mazières L (1991) Effect of menthol on the bladder cooling reflex in the cat. Acta Physiol Scand 141:1–10

    PubMed  Google Scholar 

  • Liu D, Diorio J, Tannenbaum B, Caldji C, Francis D, Freedman A, Sharma S, Pearson D, Plotsky PM, Meaney MJ (1997) Maternal care, hippocampal glucocorticoid receptors, and hypothalamic–pituitary–adrenal responses to stress. Science 277:1659–1662

    PubMed  CAS  Google Scholar 

  • Longhurst JC, Dittman LE (1987) Hypoxia, bradykinin and prostaglandins stimulate ischemically sensitive visceral afferents. Am J Physiol 253:H556–H567

    PubMed  CAS  Google Scholar 

  • Longhurst JC, Kaufman MP, Ordway GA, Musch TI (1984) Effects of bradykinin and capsaicin on endings of afferent fibers from abdominal visceral organs. Am J Physiol 247:R552–R559

    PubMed  CAS  Google Scholar 

  • Longhurst JC, Rotto DM, Kaufman MP, Stahl GL (1991) Ischemically sensitive abdominal visceral afferents: response to cyclooxygenase blockade. Am J Physiol 261:H2075–H2081

    PubMed  CAS  Google Scholar 

  • Longstreth GF (1994) Irritable bowel syndrome and chronic pelvic pain. Obstet Gynecol Surv 49:505–507

    PubMed  CAS  Google Scholar 

  • Longstreth GF, Drossman DA (2002) New developments in the diagnosis and treatment of irritable bowel syndrome. Curr Gastroenterol Rep 4:427–434

    PubMed  Google Scholar 

  • Lu Y, Westlund KN (2001) Effects of baclofen on colon inflammation-induced Fos, CGRP and SP expression in spinal cord and brainstem. Brain Res 889:118–130

    PubMed  CAS  Google Scholar 

  • Lynn PA, Blackshaw LA (1999) In vitro recordings of afferent fibres with receptive fields in the serosa, muscle and mucosa of rat colon. J Physiol 518:271–282

    PubMed  CAS  Google Scholar 

  • Lynn PA, Olsson C, Zagorodnyuk V, Costa M, Brookes SJ (2003) Rectal intraganglionic laminar endings are transduction sites of extrinsic mechanoreceptors in the guinea pig rectum. Gastroenterology 125:786–794

    PubMed  Google Scholar 

  • Lynn P, Zagorodnyuk V, Hennig G, Costa M, Brookes S (2005) Mechanical activation of rectal intraganglionic laminar endings in the guinea pig distal gut. J Physiol 564:589–601

    PubMed  CAS  Google Scholar 

  • Mackenzie, J (1893) Some points bearing on the association of sensory disorders and visceral disease. Brain 16:321–353

    Google Scholar 

  • Malcangio M, Bowery NG (1996) GABA and its receptors in the spinal cord. Trends Pharmacol Sci 17:457–462

    PubMed  CAS  Google Scholar 

  • Malykhina AP (2007) Neural mechanisms of pelvic organ cross-sensitization. Neuroscience 149:660–672

    PubMed  CAS  Google Scholar 

  • Malykhina AP, Qin C, Greenwood-van Meerveld B, Foreman RD, Lupu F, Akbarali HI (2006) Hyperexcitability of convergent colon and bladder dorsal root ganglion neurons after colonic inflammation: mechanism for pelvic organ cross-talk. Neurogastroenterol Motil 18:936–948

    PubMed  CAS  Google Scholar 

  • Marvizón JC, Martínez V, Grady EF, Bunnett NW, Mayer EA (1997) Neurokinin 1 receptor internalization in spinal cord slices induced by dorsal root stimulation is mediated by NMDA receptors. J Neuroscience 17:8129–8136

    Google Scholar 

  • Marvizon JC, Grady EF, Stefani E, Bunnett NW, Mayer EA (1999) Substance P release in the dorsal horn assessed by receptor internalization: NMDA receptors counteract a tonic inhibition by GABAB receptors. Eur J Neurosci 11:417–426

    PubMed  CAS  Google Scholar 

  • Marvizón JC, McRoberts JA, Ennes HS, Song B, Wang X, Jinton L, Corneliussen B, Mayer EA (2002) Two N-methyl-d-aspartate receptors in rat dorsal root ganglia with different subunit composition and localization. J Comp Neurol 446:325–341

    PubMed  Google Scholar 

  • Matthews MR, Connaughton M, Cuello AC (1987) Ultrastructure and distribution of substance P-immunoreactive sensory collaterals in the guinea pig prevertebral sympathetic ganglia. J Comp Neurol 258:28–51

    PubMed  CAS  Google Scholar 

  • Matthews PJ, Aziz Q, Facer P, Davis JB, Thompson DG, Anand P (2004) Increase Capsaicin Receptor TRPV1 nerve fibers in the inflamed human oesophagus. Eur J Gastroenterol Hepatol 16:897–902

    PubMed  CAS  Google Scholar 

  • Mayer EA, Gebhart GF (1994) Basic and clinical aspects of visceral hyperalgesia. Gastroenterology 107:271–293

    PubMed  CAS  Google Scholar 

  • McMahon SB, Morrison JF (1982) Two group of spinal interneurones that respond to stimulation of the abdominal viscera of the cat. J Physiol 322:21–34

    PubMed  CAS  Google Scholar 

  • McRoberts JA, Coutinho SV, Marvizón JC, Grady EF, Tognetto M, Sengupta JN, Ennes HS, Chaban VV, Amadesi S, Creminon C, Lanthorn T, Geppetti P, Bunnett NW, Mayer EA (2001) Role of peripheral N-methyl-d-aspartate (NMDA) receptors in visceral nociception in rats. Gastroenterology 120:1737–1748

    PubMed  CAS  Google Scholar 

  • McRoberts JA, Li J, Ennes HS, Mayer EA (2007) Sex-dependent differences in the activity and modulation of N-methyl-d-aspartic acid receptors in rat dorsal root ganglia neurons. Neuroscience 148(4):1015–20

    PubMed  CAS  Google Scholar 

  • Mei N (1985) Intestinal chemosensitivity. Physiol Rev 65:211–237

    PubMed  CAS  Google Scholar 

  • Miampamba M, Sharkey K (1998) Distribution of calcitonin gene-related peptide, somatostatin, substance P and vasoactive intestinal polypeptide in experimental colitis in rats. Neurogastroenterol Motil 10:315–329

    PubMed  CAS  Google Scholar 

  • Miranda A, Peles S, Rudolph C, Shaker R, Sengupta JN (2004) Altered visceral sensation in response to somatic pain in the rat. Gastroenterology 126:1082–1089

    PubMed  Google Scholar 

  • Miranda A, Peles S, Shaker R, Rudolph C, Sengupta JN (2006) Neonatal nociceptive somatic stimulation differentially modifies the activity of spinal neurons in rats and results in altered somatic and visceral sensation. J Physiol 572:775–785

    PubMed  CAS  Google Scholar 

  • Miranda A, Nordstrom E, Smith C, Sengupta JN (2007) The Role of TRPV1 in Mechanical and Chemical Visceral Hyperalgesia Following Experimental Colitis. Neuroscience 148: 1021–1032

    PubMed  CAS  Google Scholar 

  • Mitsui T, Kakizaki H, Matsuura S, Ameda K, Yoshioka M, Koyanagi T (2001) Afferent fibers of the hypogastric nerves are involved in the facilitating effects of chemical bladder irritation in rats. J Neurophysiol 86:2276–2284

    PubMed  CAS  Google Scholar 

  • Mori T, Kawano K, Shishikura T (2004) 5-HT3-receptor antagonist inhibits visceral pain differently in chemical and mechanical stimuli in rats. J Pharmacol Sci 94:73–76

    PubMed  CAS  Google Scholar 

  • Morris GP, Beck PL, Herridge MS, Depew WT, Szewczuk MR, Wallace JL (1989) Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology 96:795–803

    PubMed  CAS  Google Scholar 

  • Morrison JFB (1973) Splanchnic slowly adapting mechanoreceptor with punctate receptive fields in the mesentery and gastrointestinal tract of the cat. J Physiol Lond 233:340–361

    Google Scholar 

  • Morrison JFB (1987) Sensation arising from the lower urinary tract. In: Torrens M, Morrison JFB (eds) Physiology of the lower urinary tract. Springer, New York, pp 89–131

    Google Scholar 

  • Morteau O, Hachet T, Caussette M, Bueno L (1994a) Experimental colitis alters visceromotor response to colorectal distension in awake rats. Dig Dis Sci 39:1239–1248

    PubMed  CAS  Google Scholar 

  • Morteau O, Julia V, Eeckhout C, Bueno L (1994b) Influence of 5-HT3 receptor antagonists in visceromotor and nociceptive responses to rectal distension before and during experimental colitis in rats. Fundam Clin Pharmacol 8:553–562

    PubMed  CAS  Google Scholar 

  • Moss NG, Harrington WW, Tucker MS (1997) Pressure, volume, and chemosensitivity in afferent innervation of urinary bladder in rats. Am J Physiol 272:R695–R703

    PubMed  CAS  Google Scholar 

  • Mukerji G, Yiangou Y, Corcoran SL, Selmer IS, Smith GD, Benham CD, Bountra C, Agarwal SK, Anand P (2006a) Cool and menthol receptor TRPM8 in human urinary bladder disorders and clinical correlations. BMC Urol 6:6–13

    PubMed  Google Scholar 

  • Mukerji G, Waters J, Chessell IP, Bountra C, Agarwal SK, Anand P (2006b) Pain during ice water test distinguishes clinical bladder hypersensitivity from overactivity disorders. BMC Urol 6:31–42

    PubMed  Google Scholar 

  • Multon S, Schoenen J (2005) Pain control by vagus nerve stimulation: from animal to man… and back. Acta Neurol Belg 105(2):62–67

    PubMed  Google Scholar 

  • Nadelhaft I, Booth AM (1984) The location and morphology of preganglionic neurons and the distribution the distribution of the visceral afferents from the rat pelvic nerve: a horseradish peroxidase study. J Comp Neurol 226:238–245

    PubMed  CAS  Google Scholar 

  • Nadelhaft I, Vera PL (1991) Neurons labelled after the application of tracer to the distal stump of the transected hypogastric nerve in the rat. J Auton Nerv Syst 36:87–96

    PubMed  CAS  Google Scholar 

  • Nadelhaft I, Roppolo C, Morgan C, De Groat WC (1983) Parasympathetic preganglionic neurons and visceral primary afferents in monkey sacral spinal cord revealed following application of horseradish peroxidase to pelvic nerve. J Comp Neurol 216:36–52

    PubMed  CAS  Google Scholar 

  • Namasivayam S, Eardley I, Morrison JF (1999) Purinergic sensory neurotransmission in the urinary bladder: an in vitro study in the rat. Br J Urol 854-860

    Google Scholar 

  • Nazif O, Teichman JM, Gebhart GF (2007) Neural upregulation in interstitial cystitis. Urology 69:24–33

    PubMed  Google Scholar 

  • Ness TJ, Gebhart GF (1988) Colorectal distension as a noxious visceral stimulus: physiologic and pharmacologic characterization of pseudaffective reflexes in the rat. Brain Res 450:153–169

    PubMed  CAS  Google Scholar 

  • Ness TJ, Gebhart GF (1990) Visceral pain: a review of experimental studies. Pain 41:167–234

    PubMed  CAS  Google Scholar 

  • Ness TJ, Metcalf AM, Gebhart GF (1990) A psychophysical study in humans using phasic colonic distension as a noxious visceral stimulus. Pain 43:377–386

    PubMed  CAS  Google Scholar 

  • Ness TJ, Fillingim RB, Randich A, Backensto EM, Faught E (2000) Low intensity vagal nerve stimulation lowers human thermal pain thresholds. Pain 86:81–85

    PubMed  CAS  Google Scholar 

  • Ness TJ, Lewis-Sides A, Castroman P (2001) Characterization of pressor and visceromotor reflex responses to bladder distention in rats: sources of variability and effect of analgesics. J Urol 165:968–975

    PubMed  CAS  Google Scholar 

  • Okano S, Ikeura Y, Inatomi N (2002) Effects of tachykinin NK1 receptor antagonists on the viscerosensory response caused by colorectal distention in rabbits. J Pharmacol Exp Ther 300:925–931

    PubMed  CAS  Google Scholar 

  • Olah Z, Karai L, Iadarola MJ (2001) Anandamide activates vanilloid receptor 1 (VR1) at acidic pH in dorsal root ganglia neurons and cells ectopically expressing VR1. J Biol Chem 276:31163–31170

    PubMed  CAS  Google Scholar 

  • Olivar T, Laird JM (1999) Differential effects of N-methyl-d-aspartate receptor blockade on nociceptive somatic and visceral reflexes. Pain 79:67–73

    PubMed  CAS  Google Scholar 

  • Ozaki N, Gebhart GF (2001) Characterization of mechanosensitive splanchnic nerve afferent fibers innervating the rat stomach. Am J Physiol 281:G1449–G1459

    CAS  Google Scholar 

  • Ozaki N, Bielefeldt K, Sengupta JN, Gebhart GF (2002) Models of gastric visceral hyperalgesia. Am J Physiol 283:G666–G676

    CAS  Google Scholar 

  • Page AJ, Blackshaw AL (1998) An in vitro study of the properties of vagal afferent fibres innervating the ferret oesophagus and stomach. J Physiol 512:907–916

    PubMed  CAS  Google Scholar 

  • Page AJ, Blackshaw AL (1999) GABAB receptors inhibit mechanosensitivity of primary afferent endings. J Neurosci 19:8597–8602

    PubMed  CAS  Google Scholar 

  • Paintal AS (1954) A method of location of the receptors of visceral afferent fibers. J Physiol Lond 124:166–172

    PubMed  CAS  Google Scholar 

  • Partosoedarso ER, Young RL, Blackshaw AL (2001) GABAB receptors on vagal afferent pathways: peripheral and central inhibition. Am J Physiol Gastrointest Liver Physiol 280:G658–G668

    PubMed  CAS  Google Scholar 

  • Pascual JI, Insausti R, Gonzalo LM (1989) The pelvic innervation in the rat: different spinal origin and projections in Sprague-Dawley and Wistar rats. Brain Res 480:397–402

    PubMed  CAS  Google Scholar 

  • Pascual JI, Insausti R, Gonzalo LM (1993) Urinary bladder innervation in male rat: termination of primary afferents in the spinal cord as determined by transganglionic transport of WGA-HRP. J Urol 150:500–504

    PubMed  CAS  Google Scholar 

  • Pattinson D, Fitzerald M (2004) The neurobiology of infant pain: development of excitatory and inhibitory neurotransmission in the spinal dorsal horn. Reg Anes Pain Med 29:36–44

    Google Scholar 

  • Peles S, Miranda A, Shaker R, Sengupta JN (2004) Acute nociceptive somatic stimulus sensitizes neurons in the spinal cord to colonic distension in the rat. J Physiol 560:291–302

    PubMed  CAS  Google Scholar 

  • Pezzone MA, Liang R, Fraser MO (2005) A model of neural cross-talk and irritation in the pelvis: implications for the overlap of chronic pelvic pain disorders. Gastroenterology 128:1953–1964

    PubMed  Google Scholar 

  • Phillips RJ, Powley TL (2000) Tension and stretch receptors in gastrointestinal smooth muscle: re-evaluating vagal mechanoreceptor electrophysiology. Brain Res Brain Res Rev 34:1–26

    PubMed  CAS  Google Scholar 

  • Plotsky PM, Thrivikraman KV, Nemeroff CB, Caldji C, Sharma S, Meaney MJ (2005) Long-term consequences of neonatal rearing on central corticotropin-releasing factor systems in adult male rat offspring. Neuropsychopharmacology 30:2192–204

    PubMed  CAS  Google Scholar 

  • Price DD, Zhou Q, Moshiree B, Robinson ME, Nicholas Verne G (2006) Peripheral and central contributions to hyperalgesia in irritable bowel syndrome. J Pain 7:529–535

    PubMed  Google Scholar 

  • Qin C, Foreman RD (2004) Viscerovisceral convergence of urinary bladder and colorectal inputs to lumbosacral spinal neurons in rats. Neuroreport 15:467–471

    PubMed  Google Scholar 

  • Qin C, Malykhina AP, Akbarali HI, Foreman RD (2005) Cross-organ sensitization of lumbosacral spinal neurons receiving urinary bladder input in rats with inflamed colon. Gastroenterology 129:1967–1978

    PubMed  Google Scholar 

  • Rachmilewitz D, Simon PL, Schwartz LW, Griswold DE, Fondacaro JD, Wasserman MA (1989) Inflammatory mediators of experimental colitis in rats. Gastroenterology 97:326–337

    PubMed  CAS  Google Scholar 

  • Randich A, Uzzell T, Cannon R, Ness TJ (2006a) Inflammation and enhanced nociceptive responses to bladder distension produced by intravesical zymosan in the rat. BMC Urol 6:2–8

    PubMed  Google Scholar 

  • Randich A, Uzzell T, DeBerry JJ, Cannon R, Ness TJ (2006b) Neonatal urinary bladder inflammation produces adult bladder hypersensitivity. J Pain 7:468–479

    Google Scholar 

  • Ranieri F, Mei N, Crousillat, J (1973) Splanchnic afferent arising from gastrointestinal and peritoneal mechanoreceptor. Exp Brain Res 16:276–290

    PubMed  CAS  Google Scholar 

  • Ren K, Randich A, Gebhart GF (1991) Effects of electrical stimulation of vagal afferents on spinothalamic tract cells in the rat. Pain 44:311–319

    PubMed  CAS  Google Scholar 

  • Ren K, Zhuo M, Randich A, Gebhart GF (1993) Vagal afferent stimulation-produced effects on nociception in capsaicin-treated rats. J Neurophysiol 69(5):1530–1540

    PubMed  CAS  Google Scholar 

  • Ren TH, Wu J, Yew D, Ziea E, Lao L, Leung WK, Berman B, Hu PJ, Sung JJ (2007) Effects of neonatal maternal separation on neurochemical and sensory response to colonic distension in a rat model of irritable bowel syndrome. Am J Physiol 292:G849–G856

    CAS  Google Scholar 

  • Richter JE, Heading RC, Janssens J, Wilson J (2000) Functional esophageal disorders. In: Drossman DA (ed) Rome II; the functional gastrointestinal disorders, 2nd edn. Degnon, McLean, chap 5

    Google Scholar 

  • Riley RC, Trafton JA, Chi SI, Basbaum AL (2001) Presynaptic regulation of spinal cord tachykinin signaling via GABAB but not GABAA receptor activation. Neuroscience 103:725–737

    PubMed  CAS  Google Scholar 

  • Ritchie J (1973) Pain from the pelvic colon by inflating a balloon in the irritable colon syndrome. Gut 14:125–132

    PubMed  CAS  Google Scholar 

  • Robbins A, Sato Y, Hotta H, Berkley KJ (1990) Responses of hypogastric nerve afferent fibers to uterine distension in estrous or metestrous rats. Neurosci Lett 110:82–85

    PubMed  CAS  Google Scholar 

  • Robbins A, Berkley KJ, Sato Y (1992) Estrous cycle variation of afferent fibers supplying reproductive organs in the female rat. Brain Res 596:353–356

    PubMed  CAS  Google Scholar 

  • Rong W, Burnstock G (2004) Activation of ureter nociceptor by exogenous and endogenous ATP in guinea pig. Neuropharmacology 47:1093–1101

    PubMed  CAS  Google Scholar 

  • Rong W, Spyer KM, Burnstock G (2002) Activation and sensitisation of low and high threshold afferent fibres mediated by P2X receptors in the mouse urinary bladder. J Physiol 541:591–600

    PubMed  CAS  Google Scholar 

  • Roppolo JR, Tai C, Booth AM, Buffington CA, de Groat WC, Birder LA (2005) Bladder Adelta afferent nerve activity in normal cats and cats with feline interstitial cystitis. J Urol 173(3):1011–1015

    PubMed  Google Scholar 

  • Ruch TC (1946) Visceral sensation and referred pain. In: Fulton JF (ed) Howell's textbook of physiology, 15th edn. Saunders, Philadelphia, pp 385–401

    Google Scholar 

  • Ruch TC (1961) Pathophysiology of pain. In: Ruch TC, Patton JD, Woodbury JW, Towe AL (eds) Medical physiology and biophysics, 9th edn. Saunders, Philadelphia, pp 350–368

    Google Scholar 

  • Sann H (1998) Chemosensitivity of nociceptive, mechanosensitive afferent nerve fibres in the guinea-pig ureter. Eur J Neurosci 10:1300–1311

    PubMed  CAS  Google Scholar 

  • Sann H, Hammer K, Hildesheim IF, Pierau FK (1997) Neurons in the chicken ureter are innervated by substance P- and calcitonin gene-related peptide-containing nerve fibres: immunohistochemical and electrophysiological evidence. J Comp Neurol 380:105–118

    PubMed  CAS  Google Scholar 

  • Schicho R, Waltraud F, Liebmann I, Holzer P, Lippe IT (2004) Increased expression of TRPV1 receptor in dorsal root ganglia by acid insult of the rat gastric mucosa. Eur J Neurosci 19:1811–1818

    PubMed  Google Scholar 

  • Schnitzlein HN, Hoffman HH, Tucker CC, Quigley MB (1960) The pelvic splanchnic nerves of the male Rheusus monkey. J Comp Neurol 114:51–65

    PubMed  CAS  Google Scholar 

  • Schwetz I, McRoberts JA, Coutinho SV, Bradesi S, Gale G, Fanselow M, Million M, Ohning G, Taché Y, Plotsky PM, Mayer EA (2005) Corticotropin-releasing factor receptor 1 mediates acute and delayed stress-induced visceral hyperalgesia in maternally separated Long-Evans rats. Am J Physiol 289:G704–G712

    CAS  Google Scholar 

  • Sedan O, Sprecher E, Yarnitsky D (2005) Vagal stomach afferents inhibit somatic pain perception. Pain 113:354–359

    PubMed  Google Scholar 

  • Semenenko FM, Cervero F (1992) Afferent fibres from the guinea-pig ureter: size and peptide content of the dorsal root ganglion cells of origin. Neuroscience 47:197–201

    PubMed  CAS  Google Scholar 

  • Sengupta JN (2006) Esophageal sensory physiology. In: GI motility online. Nature, New York

    Google Scholar 

  • Sengupta JN, Gebhart GF (1994a) Characterization of mechanosensitive pelvic nerve afferent fibers innervating the colon of the rat. J Neurophysiol 71:2046–2060

    PubMed  CAS  Google Scholar 

  • Sengupta JN, Gebhart GF (1994b) Mechanosensitive properties of pelvic nerve afferent fibers innervating the urinary bladder of the rat. J Neurophysiol 72:2420–30

    PubMed  CAS  Google Scholar 

  • Sengupta JN, Gebhart GF (1994c) Gastrointestinal afferent fibers and visceral sensations. In: Johnson LR et al (eds) Physiology of the gastrointestinal tract. Raven, New York, pp 483–519

    Google Scholar 

  • Sengupta JN, Gebhart GF (1998) The sensory innervation of the colon and its modulation. Curr Opin Gastrol 14:15–20

    Google Scholar 

  • Sengupta JN, Saha JK, Goyal RK (1990) Stimulus-response function studies of esophageal mechanosensitive nociceptor in sympathetic afferents of opossum. J Neurophysiol 64:796–812

    PubMed  CAS  Google Scholar 

  • Sengupta JN, Saha JK, Goyal RK (1992) Differential sensitivity of bradykinin to esophageal distension-sensitive mechanoreceptor in vagal and sympathetic afferents of the opossum. J Neurophysiol 68:1053–1067

    PubMed  CAS  Google Scholar 

  • Sengupta JN, Su X, Gebhart GF (1996) Kappa, but not mu or delta, opioids attenuate responses to distention of afferent fibers innervating the rat colon. Gastroenterology 111:968–980

    PubMed  CAS  Google Scholar 

  • Sengupta JN, Snider A, Su X, Gebhart GF (1999) Effects of kappa opioids in the inflamed rat colon. Pain 79:175–185

    PubMed  CAS  Google Scholar 

  • Sengupta JN, Medda BK, Shaker R (2002) Effect of GABA(B) receptor agonist on distension-sensitive pelvic nerve afferent fibers innervating rat colon. Am J Physiol 283:G1343–G1351

    CAS  Google Scholar 

  • Shea VK, Cai R, Crepps B, Mason JL, Perl ER (2000) Sensory fibers of the pelvic nerve innervating the Rat's urinary bladder. J Neurophysiol 84:1924–1933

    PubMed  CAS  Google Scholar 

  • Sheehan D (1932) The afferent nerve supply of the mesentery and significance in the causation of abdominal pain. J Anat 67:233–249

    Google Scholar 

  • Smid SD, Young RL, Cooper NJ, Blackshaw AL (2001) GABABR expressed on vagal afferent neurons inhibit gastric mechanosensitivity in ferret proximal stomach. Am J Physiol Gastrointest Liver Physiol 281:G1494–G1501

    PubMed  CAS  Google Scholar 

  • Smith C, Nordstrom E, Sengupta JN, Miranda A (2007) Neonatal gastric suctioning results in chronic somatic and visceral hyperalgesia: role of corticotropin releasing factor. Neurogastroenterol Motil 19:692–699

    PubMed  CAS  Google Scholar 

  • Sperber AD, Atzmon Y, Neumann L, Weisberg I, Shalit Y, Abu-Shakrah M, Fich A, Buskila D (1999) Fibromyalgia in the irritable bowel syndrome: studies of prevalence and clinical implications. Am J Gastroenterol 94:3541–3546

    PubMed  CAS  Google Scholar 

  • Spiller R (2007) Recent advances in understanding the role of serotonin in gastrointestinal motility in functional bowel disorders: alterations in 5-HT signalling and metabolism in human disease. Neurogastroenterol Motil 19(Suppl 2):25–31

    PubMed  CAS  Google Scholar 

  • Strigo IA, Duncan GH, Bushnell MC, Boivin M, Wainer I, Rodriguez Rosas ME, Persson J (2005) The effects of racemic ketamine on painful stimulation of skin and viscera in human subjects. Pain 113:255–264

    PubMed  CAS  Google Scholar 

  • Su X, Gebhart GF (1998) Mechanosensitive pelvic nerve afferent fibers innervating the colon of the rat polymodal in character. J Neurophysiol 80:2632–2644

    PubMed  CAS  Google Scholar 

  • Su X, Sengupta JN, Gebhart GF (1997a) Effects of opioids on mechanosensitive pelvic nerve afferent fibers innervating the urinary bladder of the rat. J Neurophysiol 77:1566–1580

    PubMed  CAS  Google Scholar 

  • Su X, Sengupta JN, Gebhart GF (1997b) Effects of kappa opioid receptor-selective agonists on responses of pelvic nerve afferents to noxious colorectal distension. J Neurophysiol 78:1003–1012

    PubMed  CAS  Google Scholar 

  • Su X, Joshi SK, Kardos S, Gebhart GF (2002) Sodium channel blocking actions of the kappa-opioid receptor agonist U50,488 contribute to its visceral antinociceptive effects. J Neurophysiol 87:1271–1279

    PubMed  CAS  Google Scholar 

  • Su X, Riedel ES, Leon LA, Laping NJ (2008) Pharmacologic evaluation of pressor and visceromotor reflex responses to bladder distension. Neurourol Urodyn 27:249–253

    PubMed  Google Scholar 

  • Talaat M (1937) Afferent impulses in the nerves supplying the urinary bladder. J Physiol Lond 89:1–13

    PubMed  CAS  Google Scholar 

  • Talley NJ, Dennis EH, Schettler-Duncan VA, Lacy BE, Olden KW, Crowell MD (2003) Overlapping upper and lower gastrointestinal symptoms in irritable bowel syndrome patients with constipation or diarrhea. Am J Gastroenterol 98:2454–2459

    PubMed  Google Scholar 

  • Tang B, Ji Y, Traub RJ (2008) Estrogen alters spinal NMDA receptor activity via a PKA signaling pathway in a visceral pain model in the rat. Pain 137:540–549

    PubMed  CAS  Google Scholar 

  • Tempest HV, Dixon AK, Turner WH, Elneil S, Sellers LA, Ferguson DR (2004) P2X and P2X receptor expression in human bladder urothelium and changes in interstitial cystitis. BJU Int 93:1344–1348

    PubMed  CAS  Google Scholar 

  • Thurston CL, Randich A (1992) Electrical stimulation of the subdiaphragmatic vagus in rats: inhibition of heat-evoked responses of spinal dorsal horn neurons and central substrates mediating inhibition of the nociceptive tail flick reflex. Pain 51:349–365

    PubMed  CAS  Google Scholar 

  • Torrens M, Hald T (1979) Bladder denervation procedures. Urol Clin North Am 6:283–293

    PubMed  CAS  Google Scholar 

  • Towers S, Princivalle A, Billinton A, Edmunds M, Bettler B, Urban L, Castro-Lopes J, Bowery NG (2000) GABAB receptor protein and mRNA distribution in rat spinal cord and dorsal root ganglia. Eur J Neurosci 12:3201–3210

    PubMed  CAS  Google Scholar 

  • Traub RJ, Pechman P, Iadarola MJ, Gebhart GF (1992) Fos-like proteins in the lumbosacral spinal cord following noxious and non-noxious colorectal distention in the rat. Pain 49:393–403

    PubMed  CAS  Google Scholar 

  • Traub RJ, Hutchcroft K, Gebhart GF (1999) The peptide content of colonic afferents decreases following colonic inflammation. Peptides 20:267–273

    PubMed  CAS  Google Scholar 

  • Traub RJ, Zhai Q, Ji Y, Kovalenko M (2002) NMDA receptor antagonists attenuate noxious and nonnoxious colorectal distention-induced Fos expression in the spinal cord and the visceromotor reflex. Neuroscience 113:205–211

    PubMed  CAS  Google Scholar 

  • Trevisani M, Patacchini R, Nicoletti P, Gatti R, Gazzieri D, Lissi N, Zagli G, Creminon C, Geppetti P, Harrison S (2005) Hydrogen sulfide causes vanilloid receptor 1-mediated neurogenic inflammation in the airways. Br J Pharmacol 145:1123–1131

    PubMed  CAS  Google Scholar 

  • Triadafilopoulos G, Simms RW, Goldenberg DL (1991) Bowel dysfunction in fibromyalgia syndrome. Dig Dis Sci 36:59–64

    PubMed  CAS  Google Scholar 

  • Tsukimi Y, Mizuyachi K, Yamasaki T, Niki T, Hayashi F (2005) Cold response of the bladder in guinea pig: involvement of transient receptor potential channel, TRPM8. Urology 65:406–410

    PubMed  Google Scholar 

  • Uemura E, Fletcher TF, Dirks VA, Bradley WE (1973) Distribution of sacral afferent axons in cat urinary bladder. Am J Anat 136:305–313

    PubMed  CAS  Google Scholar 

  • Uemura E, Fletcher TF, Bradley WE (1974) Distribution of lumbar afferent axons in muscle in muscle coat of cat urinary bladder. Am J Anat 139:389–398

    Google Scholar 

  • Uemura E, Fletcher TF, Bradley WE (1975) Distribution of lumbar and sacral afferent axons in submucosa of cat urinary bladder. Anat Rec 183:579–587

    PubMed  CAS  Google Scholar 

  • Ustinova EE, Fraser MO, Pezzone MA (2006) Colonic irritation in the rat sensitizes urinary bladder afferents to mechanical and chemical stimuli: an afferent origin of pelvic organ cross-sensitization. Am J Physiol 290:F1478–F1487

    CAS  Google Scholar 

  • Ustinova EE, Gutkin DW, Pezzone MA (2007) Sensitization of pelvic nerve afferents and mast cell infiltration in the urinary bladder following chronic colonic irritation is mediated by neuropeptides. Am J Physiol 292:F123–F130

    CAS  Google Scholar 

  • Veale D, Kavanagh G, Fielding JF, Fitzeral O (1991) Primary fibromyalgia and the irritable bowel syndrome: different expressions of a common pathogenic process. Br J Rheumatol 30:220–222

    PubMed  CAS  Google Scholar 

  • Vera PL, Nadelhaft I (1990) Conduction velocity distribution of afferent fibers innervating the rat urinary bladder. Brain Res 520:83–89

    PubMed  CAS  Google Scholar 

  • Vera PL, Nadelhaft I (1992) Afferent and sympathetic innervation of the dome and the base of the urinary bladder of the female rat. Brain Res 29:651–658

    CAS  Google Scholar 

  • Verne GN, Price DD (2002) Irritable bowel syndrome as a common precipitant of central sensitization. Curr Rheumatol Rep 4:322–328

    PubMed  Google Scholar 

  • Verne GN, Robinson ME, Price DD (2001) Hypersensitivity to visceral and cutaneous pain in the irritable bowel syndrome. Pain 93:7–14

    PubMed  CAS  Google Scholar 

  • Verne GN, Himes NC, Robinson ME, Gopinath KS, Briggs RW, Crosson B, Price DD (2003) Central representation of visceral and cutaneous hypersensitivity in the irritable bowel syndrome. Pain 103:99–110

    PubMed  Google Scholar 

  • Von Haller A (1755) A dissertation of the sensible and irritable parts of animals. Nourse, London

    Google Scholar 

  • Wallace JL, Le T, Carter L, Appleyard CB, Beck P (1995) Hapten-induced colitis in the rat: alternatives to trinitrobenzene sulfonic acid. J Pharmacol Toxicol Methods 33:237–239

    PubMed  CAS  Google Scholar 

  • Wang G, Tang B, Traub RJ (2005) Differential processing of noxious colonic input by thoracolumbar and lumbosacral dorsal horn neurons in the rat. J Neurophysiol 94:3788–3794

    PubMed  Google Scholar 

  • Wang G, Tang B, Traub RJ (2007) Pelvic nerve input mediates descending modulation of homovisceral processing in the thoracolumbar spinal cord of the rat. Gastroenterology 133:1544–1553

    PubMed  Google Scholar 

  • Willert RP, Woolf CJ, Hobson AR, Delaney C, Thompson DG, Aziz Q (2004) The development and maintenance of human visceral pain hypersensitivity is dependent on the N-methyl-d-aspartate receptor. Gastroenterology 126:683–692

    PubMed  CAS  Google Scholar 

  • Willert RP, Delaney C, Kelly K, Sharma A, Aziz Q, Hobson AR (2007) Exploring the neurophysiological basis of chest wall allodynia induced by experimental oesophageal acidification – evidence of central sensitization. Neurogastroenterol Motil 19:270–278

    PubMed  CAS  Google Scholar 

  • Williams RE, Hartmann KE, Sandler RS, Miller WC, Steege JF (2004) Prevalence and characteristics of irritable bowel syndrome among women with chronic pelvic pain. Obstet Gynecol 104:452–458

    PubMed  Google Scholar 

  • Williams RE, Hartmann KE, Sandler RS, Miller WC, Savitz LA, Steege JF (2005) Recognition and treatment of irritable bowel syndrome among women with chronic pelvic pain. Am J Obstet Gynecol 192:761–767

    PubMed  Google Scholar 

  • Winnard KP, Dmitrieva N, Berkley KJ (2006) Cross-organ interactions between reproductive, gastrointestinal, and urinary tracts: modulation by estrous stage and involvement of the hypogastric nerve. Am J Physiol 291(6):R1592–R1601

    CAS  Google Scholar 

  • Winston J, Shenoy M, Medley D, Naniwadekar A, Pasricha PJ (2007) The vanilloid receptor initiates and maintains colonic hypersensitivity induced by neonatal colon irritation in rats. Gastroenterology 132:615–627

    PubMed  CAS  Google Scholar 

  • Winter DL (1971) Receptor characteristics and conduction velocites in bladder afferents. J Psychiatr Res 8:225–235

    PubMed  CAS  Google Scholar 

  • Wynn G, Ma B, Ruan HZ, Burnstock G (2004) Purinergic component of mechanosensory transduction is increased in a rat model of colitis. Am J Physiol 287:G647–G657

    CAS  Google Scholar 

  • Xu L, Gebhart GF (2008) Characterization of mouse lumbar splanchnic and pelvic nerve urinary bladder mechanosensory afferents. J Neurophysiol 99:244–253

    PubMed  Google Scholar 

  • Xu GY, Shenoy M, Winston JH, Mittal S, Pasricha PJ (2008) P2X receptor-mediated visceral hyperalgesia in a rat model of chronic visceral hypersensitivity. Gut 57(9):1230–1237

    PubMed  CAS  Google Scholar 

  • Yiangou Y, Facer P, Dyer NHC, Chan CLH, Knowles C, Williams NS, Anand P (2001) Vanilloid receptor 1 immunoreactivity in inflamed human bowel. Lancet 357:1338–1339

    PubMed  CAS  Google Scholar 

  • Yu Y, de Groat WC (2008) Sensitization of pelvic afferent nerves in the in vitro rat urinary bladder-pelvic nerve preparation by purinergic agonists and cyclophosphamide pretreatment. Am J Physiol Renal Physiol 294:F1146–F1156

    PubMed  CAS  Google Scholar 

  • Zagorodnyuk VP, Brookes SJH (2000) Transduction sites of vagal mechanoreceptors in the guinea-pig esophagus. J Neurosci 20:6249–6255

    PubMed  CAS  Google Scholar 

  • Zagorodnyuk VP, Chen BN, Brookes SJ (2001) Intraganglionic laminar endings are mechano-transduction sites of vagal tension receptors in the guinea-pig stomach. J Physiol 534:255–268

    PubMed  CAS  Google Scholar 

  • Zagorodnyuk VP, Chen BN, Costa M, Brookes SJH (2003) Mechanotransduction by intraganglionic laminar endings of vagal tension receptors in the guinea-pig oesophagus. J Physiol 553:575–587

    PubMed  CAS  Google Scholar 

  • Zagorodnyuk VP, Lynn P, Costa M, Brookes SJ (2005) Mechanisms of mechanotransduction by specialized low-threshold mechanoreceptors in the guinea pig rectum. Am J Physiol 289:G397–G406

    CAS  Google Scholar 

  • Zagorodnyuk VP, Gibbins IL, Costa M, Brookes SJ, Gregory SJ (2007) Properties of the major classes of mechanoreceptors in the guinea pig bladder. J Physiol 585:147–163

    PubMed  CAS  Google Scholar 

  • Zamyatina ON (1954) Electrophysiological characteristics and functional significance of afferent impulses originating in the intestinal wall. Transaction of I.P. Pavlov Institute of Physiology 3:193–208

    Google Scholar 

  • Zhai QZ, Traub RJ (1999) The NMDA receptor antagonist MK-801 attenuates c-Fos expression in the lumbosacral spinal cord following repetitive noxious and non-noxious colorectal distention. Pain 83(2):321–329

    PubMed  CAS  Google Scholar 

  • Zhou Q, Price DD, Caudle RM, Verne N (2008) Visceral and somatic hypersensitivity in a subset of rats following TNBS-induced colitis. Pain 134:9–15

    PubMed  Google Scholar 

Download references

Acknowledgements

The author acknowledges the support of NIH (RO1 DK062312-A2) to obtain unpublished data reported in this chapter. The author also acknowledges Adrian Miranda and Bidyut K. Medda for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti N. Sengupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sengupta, J.N. (2009). Visceral Pain: The Neurophysiological Mechanism. In: Canning, B., Spina, D. (eds) Sensory Nerves. Handbook of Experimental Pharmacology, vol 194. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79090-7_2

Download citation

Publish with us

Policies and ethics