Skip to main content

G-Protein-Coupled Receptor-Signaling Components in Membrane Raft and Caveolae Microdomains

  • Chapter
Book cover Protein-Protein Interactions as New Drug Targets

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 186))

Abstract

The efficiency of signal transduction in cells derives in part from subcellular, in particular plasma membrane, microdomains that organize signaling molecules and signaling complexes. Two related plasma membrane domains that compartmentalize G-protein coupled receptor (GPCR) signaling complexes are lipid (membrane) rafts, domains that are enriched in certain lipids, including cholesterol and sphingolipids, and caveolae, a subset of lipid rafts that are enriched in the protein caveolin. This review focuses on the properties of lipid rafts and caveolae, the mechanisms by which they localize signaling molecules and the identity of GPCR signaling components that are organized in these domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahamsen H, Baillie G, Ngai J et al (2004) TCR- and CD28-mediated recruitment of phosphodiesterase 4 to lipid rafts potentiates TCR signaling. J Immunol 173:4847–4858

    PubMed  CAS  Google Scholar 

  • Baillie GS, Scott JD, Houslay MD (2005) Compartmentalisation of phosphodiesterases and protein kinase A: opposites attract. FEBS Lett 579:3264–3270

    Article  PubMed  CAS  Google Scholar 

  • Ballard-Croft C, Locklar AC, Kristo G et al (2006) Regional myocardial ischemia-induced activation of MAPKs is associated with subcellular redistribution of caveolin and cholesterol. Am J Physiol Heart Circ Physiol 291:H658–H667

    Article  PubMed  CAS  Google Scholar 

  • Banfi C, Brioschi M, Wait R et al (2006) Proteomic analysis of membrane microdomains derived from both failing and non-failing human hearts. Proteomics 6:1976–1988

    Article  PubMed  Google Scholar 

  • Becher A, McIlhinney RA (2005) Consequences of lipid raft association on G-protein-coupled receptor function. Biochem Soc Symp 72:151–164

    PubMed  CAS  Google Scholar 

  • Berditchevski F, Odintsova E (2007) Tetraspanins as regulators of protein trafficking. Traffic 8:89–96

    Article  PubMed  CAS  Google Scholar 

  • Bergman RN, Hechter O (1978) Neurohypophyseal hormone-responsive renal adenylate cyclase. IV. A random-hit matrix model for coupline in a hormone-sensitive adenylate cyclase system. J Biol Chem 253:3238–3250

    PubMed  CAS  Google Scholar 

  • Bhatnagar A, Sheffler DJ, Kroeze WK et al (2004) Caveolin-1 interacts with 5-HT2A serotonin receptors and profoundly modulates the signaling of selected Galphaq-coupled protein receptors. J Biol Chem 279:34614–34623

    Article  PubMed  CAS  Google Scholar 

  • Boyd NL, Park H, Yi H et al (2003) Chronic shear induces caveolae formation and alters ERK and Akt responses in endothelial cells. Am J Physiol Heart Circ Physiol 285:H1113–H1122

    PubMed  CAS  Google Scholar 

  • Carver LA, Schnitzer JE (2003) Caveolae: mining little caves for new cancer targets. Nat Rev Cancer 3:571–581

    Article  PubMed  CAS  Google Scholar 

  • Cavallo-Medved D, Mai J, Dosescu J et al (2005) Caveolin-1 mediates the expression and localization of cathepsin B, pro-urokinase plasminogen activator and their cell-surface receptors in human colorectal carcinoma cells. J Cell Sci 118:1493–1503

    Article  PubMed  CAS  Google Scholar 

  • Chini B, Parenti M (2004) G-protein coupled receptors in lipid rafts and caveolae: how, when and why do they go there? J Mol Endocrinol 32:325–338

    Article  PubMed  CAS  Google Scholar 

  • Cho KA, Ryu SJ, Park JS et al (2003) Senescent phenotype can be reversed by reduction of caveolin status. J Biol Chem 278:27789–27795

    Article  PubMed  CAS  Google Scholar 

  • Cohen AW, Park DS, Woodman SE et al (2003a) Caveolin-1 null mice develop cardiac hypertrophy with hyperactivation of p42/44 MAP kinase in cardiac fibroblasts. Am J Physiol Cell Physiol 284:C457–C474

    PubMed  CAS  Google Scholar 

  • Cohen AW, Razani B, Wang XB et al (2003b) Caveolin-1-deficient mice show insulin resistance and defective insulin receptor protein expression in adipose tissue. Am J Physiol Cell Physiol 285:C222–C235

    PubMed  CAS  Google Scholar 

  • Cohen AW, Hnasko R, Schubert W et al (2004) Role of caveolae and caveolins in health and disease. Physiol Rev 84:1341–1379

    Article  PubMed  CAS  Google Scholar 

  • Couet J, Li S, Okamoto T et al (1997a) Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J Biol Chem 272:6525–6533

    Article  PubMed  CAS  Google Scholar 

  • Couet J, Sargiacomo M, Lisanti MP (1997b) Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. J Biol Chem 272:30429–30438

    Article  PubMed  CAS  Google Scholar 

  • Crossthwaite AJ, Seebacher T, Masada N et al (2005) The cytosolic domains of Ca2+-sensitive adenylyl cyclases dictate their targeting to plasma membrane lipid rafts. J Biol Chem 280:6380–6391

    Article  PubMed  CAS  Google Scholar 

  • Del Pozo MA, Schwartz MA (2007) Rac, membrane heterogeneity, caveolin and regulation of growth by integrins. Trends Cell Biol 17:246–250

    Article  PubMed  CAS  Google Scholar 

  • Durr E, Yu J, Krasinska KM et al (2004) Direct proteomic mapping of the lung microvascular endothelial cell surface in vivo and in cell culture. Nat Biotechnol 22:985–992

    Article  PubMed  CAS  Google Scholar 

  • Echarri A, Del Pozo MA (2006) Caveolae internalization regulates integrin-dependent signaling pathways. Cell Cycle 5:2179–2182

    PubMed  CAS  Google Scholar 

  • Engelman JA, Chu C, Lin A et al (1998) Caveolin-mediated regulation of signaling along the p42/44 MAP kinase cascade in vivo. A role for the caveolin-scaffolding domain. FEBS Lett 428:205–211

    Article  PubMed  CAS  Google Scholar 

  • Feron O, Balligand JL (2006) Caveolins and the regulation of endothelial nitric oxide synthase in the heart. Cardiovasc Res 69:788–797

    Article  PubMed  CAS  Google Scholar 

  • Feron O, Dessy C, Opel DJ et al (1998) Modulation of the endothelial nitric-oxide synthase-caveolin interaction in cardiac myocytes. Implications for the autonomic regulation of heart rate. J Biol Chem 273:30249–30254

    Article  PubMed  CAS  Google Scholar 

  • Fischmeister R (2006) Is cAMP good or bad?: Depends on where it’s made. Circ Res 98:582–584

    Article  PubMed  CAS  Google Scholar 

  • Foster LJ, De Hoog CL, Mann M (2003) Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc Natl Acad Sci USA 100:5813–5818

    Article  PubMed  CAS  Google Scholar 

  • Fox TE, Houck KL, O’Neill SM et al (2007) Ceramide recruits and activates protein kinase C zeta (PKC zeta) within structured membrane microdomains. J Biol Chem 282:12450–12457

    Article  PubMed  CAS  Google Scholar 

  • Galbiati F, Volonte D, Engelman JA et al (1998) Targeted downregulation of caveolin-1 is sufficient to drive cell transformation and hyperactivate the p42/44 MAP kinase cascade. EMBO J 17:6633–6648

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Cardena G, Martasek P, Masters BS et al (1997) Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the nos caveolin binding domain in vivo. J Biol Chem 272:25437–25440

    Article  PubMed  CAS  Google Scholar 

  • Gosens R, Stelmack GL, Dueck G et al (2006) Role of caveolin-1 in p42/p44 MAP kinase activation and proliferation of human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 291:L523–L534

    Article  PubMed  CAS  Google Scholar 

  • Gratton JP, Bernatchez P, Sessa WC (2004) Caveolae and caveolins in the cardiovascular system. Circ Res 94:1408–1417

    Article  PubMed  CAS  Google Scholar 

  • Ha H, Pak Y (2005) Modulation of the caveolin-3 and Akt status in caveolae by insulin resistance in H9c2 cardiomyoblasts. Exp Mol Med 37:169–178

    PubMed  CAS  Google Scholar 

  • Head BP, Insel PA (2007) Do caveolins regulate cells by actions outside of caveolae? Trends Cell Biol 17:51–57

    Article  PubMed  CAS  Google Scholar 

  • Head BP, Patel HH, Roth DM et al (2005) G-protein-coupled receptor signaling components localize in both sarcolemmal and intracellular caveolin-3-associated microdomains in adult cardiac myocytes. J Biol Chem 280:31036–31044

    Article  PubMed  CAS  Google Scholar 

  • Head BP, Patel HH, Roth DM et al (2006) Microtubules and actin microfilaments regulate lipid raft/caveolae localization of adenylyl cyclase signaling components. J Biol Chem 281:26391–26399

    Article  PubMed  CAS  Google Scholar 

  • Heijnen HF, Waaijenborg S, Crapo JD et al (2004) Colocalization of eNOS and the catalytic subunit of PKA in endothelial cell junctions: a clue for regulated NO production. J Histochem Cytochem 52:1277–1285

    Article  PubMed  CAS  Google Scholar 

  • Helms JB, Zurzolo C (2004) Lipids as targeting signals: lipid rafts and intracellular trafficking. Traffic 5:247–254

    Article  PubMed  CAS  Google Scholar 

  • Hill MM, Bastiani M, Luetterforst R et al (2008) PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell 132:113–124

    Article  PubMed  CAS  Google Scholar 

  • Houslay MD, Baillie GS, Maurice DH (2007) cAMP-Specific phosphodiesterase-4 enzymes in the cardiovascular system: a molecular toolbox for generating compartmentalized cAMP signaling. Circ Res 100:950–966

    Article  PubMed  CAS  Google Scholar 

  • Huang CS, Zhou J, Feng AK et al (1999) Nerve growth factor signaling in caveolae-like domains at the plasma membrane. J Biol Chem 274:36707–36714

    Article  PubMed  CAS  Google Scholar 

  • Iiri T, Backlund PS Jr, Jones TL et al (1996) Reciprocal regulation of Gs alpha by palmitate and the beta gamma subunit. Proc Natl Acad Sci USA 93:14592–14597

    Article  PubMed  CAS  Google Scholar 

  • Insel PA, Patel HH (2007) Do studies in caveolin-knockouts teach us about physiology and pharmacology or instead, the ways mice compensate for ‘lost proteins’? Br J Pharmacol 150:251–254

    Article  PubMed  CAS  Google Scholar 

  • Insel PA, Head BP, Patel HH et al (2005) Compartmentation of G-protein-coupled receptors and their signalling components in lipid rafts and caveolae. Biochem Soc Trans 33:1131–1134

    Article  PubMed  CAS  Google Scholar 

  • Jacobson K, Mouritsen OG, Anderson RG (2007) Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol 9:7–14

    Article  PubMed  CAS  Google Scholar 

  • Kim HP, Wang X, Nakao A et al (2005) Caveolin-1 expression by means of p38beta mitogen-activated protein kinase mediates the antiproliferative effect of carbon monoxide. Proc Natl Acad Sci USA 102:11319–11324

    Article  PubMed  CAS  Google Scholar 

  • Kim HA, Kim KH, Lee RA (2006) Expression of caveolin-1 is correlated with Akt-1 in colorectal cancer tissues. Exp Mol Pathol 80:165–170

    Article  PubMed  CAS  Google Scholar 

  • Krajewska WM, Maslowska I (2004) Caveolins: structure and function in signal transduction. Cell Mol Biol Lett 9:195–220

    PubMed  CAS  Google Scholar 

  • Kurzchalia TV, Dupree P, Parton RG et al (1992) VIP21, a 21-kD membrane protein is an integral component of trans-Golgi-network-derived transport vesicles. J Cell Biol 118:1003–1014

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Volonte D, Galbiati F et al (2000) Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: identification of a c-Src/Cav-1/Grb7 signaling cassette. Mol Endocrinol 14:1750–1775

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Woodman SE, Engelman JA et al (2001) Palmitoylation of caveolin-1 at a single site (Cys-156) controls its coupling to the c-Src tyrosine kinase: targeting of dually acylated molecules (GPI-linked, transmembrane, or cytoplasmic) to caveolae effectively uncouples c-Src and caveolin-1 (TYR-14). J Biol Chem 276:35150–35158

    Article  PubMed  CAS  Google Scholar 

  • Lefkowitz RJ, Shenoy SK (2005) Transduction of receptor signals by beta-arrestins. Science 308:512–517

    Article  PubMed  CAS  Google Scholar 

  • Levin AM, Murase K, Jackson PJ et al (2007) Double barrel shotgun scanning of the caveolin-1 scaffolding domain. ACS Chem Biol 2:493–500

    Article  PubMed  CAS  Google Scholar 

  • Li S, Okamoto T, Chun M et al (1995) Evidence for a regulated interaction between heterotrimeric G proteins and caveolin. J Biol Chem 270:15693–15701

    Article  PubMed  CAS  Google Scholar 

  • Li S, Couet J, Lisanti MP (1996a) Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J Biol Chem 271:29182–29190

    Article  PubMed  CAS  Google Scholar 

  • Li S, Seitz R, Lisanti MP (1996b) Phosphorylation of caveolin by src tyrosine kinases. The alpha-isoform of caveolin is selectively phosphorylated by v-Src in vivo. J Biol Chem 271:3863–3868

    Article  PubMed  CAS  Google Scholar 

  • Li L, Ren CH, Tahir SA et al (2003) Caveolin-1 maintains activated Akt in prostate cancer cells through scaffolding domain binding site interactions with and inhibition of serine/threonine protein phosphatases PP1 and PP2A. Mol Cell Biol 23:9389–9404

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Pilch PF (2008) A critical role of cavin (polymerase I and transcript release factor) in caveolae formation and organization. J Biol Chem 283:4314–4322

    Article  PubMed  CAS  Google Scholar 

  • Liu P, Rudick M, Anderson RG (2002) Multiple functions of caveolin-1. J Biol Chem 277:41295–41298

    Article  PubMed  CAS  Google Scholar 

  • Lucero HA, Robbins PW (2004) Lipid rafts-protein association and the regulation of protein activity. Arch Biochem Biophys 426:208–224

    Article  PubMed  CAS  Google Scholar 

  • Luttrell LM, Lefkowitz RJ (2002) The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci 115:455–465

    PubMed  CAS  Google Scholar 

  • Lynch MJ, Hill EV, Houslay MD (2006) Intracellular targeting of phosphodiesterase-4 underpins compartmentalized cAMP signaling. Curr Top Dev Biol 75:225–259

    Article  PubMed  CAS  Google Scholar 

  • Malbon CC, Tao J, Shumay E et al (2004) AKAP (A-kinase anchoring protein) domains: beads of structure-function on the necklace of G-protein signalling. Biochem Soc Trans 32:861–864

    Article  PubMed  CAS  Google Scholar 

  • Marguet D, Lenne PF, Rigneault H et al (2006) Dynamics in the plasma membrane: how to combine fluidity and order. EMBO J 25:3446–3457

    Article  PubMed  CAS  Google Scholar 

  • McMahon KA, Zhu M, Kwon SW et al (2006) Detergent-free caveolae proteome suggests an interaction with ER and mitochondria. Proteomics 6:143–152

    Article  PubMed  CAS  Google Scholar 

  • McPhee I, Yarwood SJ, Scotland G et al (1999) Association with the SRC family tyrosyl kinase LYN triggers a conformational change in the catalytic region of human cAMP-specific phosphodiesterase HSPDE4A4B. Consequences for rolipram inhibition. J Biol Chem 274:11796–11810

    Article  PubMed  CAS  Google Scholar 

  • Morris R, Cox H, Mombelli E et al (2004) Rafts, little caves and large potholes: how lipid structure interacts with membrane proteins to create functionally diverse membrane environments. Subcell Biochem 37:35–118

    PubMed  CAS  Google Scholar 

  • Munro S (2003) Lipid rafts: elusive or illusive? Cell 115:377–388

    Article  PubMed  CAS  Google Scholar 

  • Murray F, Patel H, Suda R et al (2006) Caveolar localization and caveolin-1 regulation of PDE5 in human pulmonary artery smooth muscle cells. FASEB J. 20:A543

    Google Scholar 

  • Murthy KS, Makhlouf GM (2000) Heterologous desensitization mediated by G protein-specific binding to caveolin. J Biol Chem 275:30211–30219

    Article  PubMed  CAS  Google Scholar 

  • Nichols B (2003) Caveosomes and endocytosis of lipid rafts. J Cell Sci 116:4707–4714

    Article  PubMed  CAS  Google Scholar 

  • Nilsson R, Ahmad F, Sward K et al (2006) Plasma membrane cyclic nucleotide phosphodiesterase 3B (PDE3B) is associated with caveolae in primary adipocytes. Cell Signal 18:1713–1721

    Article  PubMed  CAS  Google Scholar 

  • Oh P, Schnitzer JE (2001) Segregation of heterotrimeric G proteins in cell surface microdomains. G(q) binds caveolin to concentrate in caveolae, whereas G(i) and G(s) target lipid rafts by default. Mol Biol Cell 12:685–698

    PubMed  CAS  Google Scholar 

  • Okamoto T, Schlegel A, Scherer PE et al (1998) Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J Biol Chem 273:5419–5422

    Article  PubMed  CAS  Google Scholar 

  • Ono K, Iwanaga Y, Hirayama M et al (2004) Contribution of caveolin-1 alpha and Akt to TNF-alpha-induced cell death. Am J Physiol Lung Cell Mol Physiol 287:L201–L209

    Article  PubMed  CAS  Google Scholar 

  • Oshikawa J, Otsu K, Toya Y et al (2004) Insulin resistance in skeletal muscles of caveolin-3-null mice. Proc Natl Acad Sci USA 101:12670–12675

    Article  PubMed  Google Scholar 

  • Ostrom RS, Insel PA (2004) The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: implications for molecular pharmacology. Br J Pharmacol 143:235–245

    Article  PubMed  CAS  Google Scholar 

  • Ostrom RS, Insel PA (2006) Methods for the study of signaling molecules in membrane lipid rafts and caveolae. Methods Mol Biol 332:181–191

    PubMed  CAS  Google Scholar 

  • Ostrom RS, Post SR, Insel PA (2000) Stoichiometry and compartmentation in G protein-coupled receptor signaling: implications for therapeutic interventions involving G(s). J Pharmacol Exp Ther 294:407–412

    PubMed  CAS  Google Scholar 

  • Ostrom RS, Gregorian C, Drenan RM et al (2001) Receptor number and caveolar co-localization determine receptor coupling efficiency to adenylyl cyclase. J Biol Chem 276:42063–42069

    Article  PubMed  CAS  Google Scholar 

  • Ostrom RS, Bundey RA, Insel PA (2004) Nitric oxide inhibition of adenylyl cyclase type 6 activity is dependent upon lipid rafts and caveolin signaling complexes. J Biol Chem 279:19846–19853

    Article  PubMed  CAS  Google Scholar 

  • Palade G (1953) Fine structure of blood capilaries. J Appl Physiol 24:1424–1436

    Google Scholar 

  • Parat MO, Fox PL (2001) Palmitoylation of caveolin-1 in endothelial cells is post-translational but irreversible. J Biol Chem 276:15776–15782

    Article  PubMed  CAS  Google Scholar 

  • Park SC, Cho KA, Jang IS et al (2004) Functional efficiency of the senescent cells: replace or restore? Ann N Y Acad Sci 1019:309–316

    Article  PubMed  CAS  Google Scholar 

  • Parton RG, Simons K (2007) The multiple faces of caveolae. Nat Rev Mol Cell Biol 8:185–194

    Article  PubMed  CAS  Google Scholar 

  • Patel HH, Tsutsumi YM, Head BP et al (2007a) Mechanisms of cardiac protection from ischemia/reperfusion injury: a role for caveolae and caveolin-1. FASEB J 21:1565–1574

    Article  PubMed  CAS  Google Scholar 

  • Patel HH, Zhang S, Murray F et al (2007b) Increased smooth muscle cell expression of caveolin-1 and caveolae contribute to the pathophysiology of idiopathic pulmonary arterial hypertension. FASEB J 21:2970–2979

    Article  PubMed  Google Scholar 

  • Peart JN, Headrick JP (2007) Adenosinergic cardioprotection: multiple receptors, multiple pathways. Pharmacol Ther 114:208–221

    Article  PubMed  CAS  Google Scholar 

  • Pike LJ (2003) Lipid rafts: bringing order to chaos. J Lipid Res 44:655–667

    Article  PubMed  CAS  Google Scholar 

  • Pike LJ (2004) Lipid rafts: heterogeneity on the high seas. Biochem J 378:281–292

    Article  PubMed  CAS  Google Scholar 

  • Pike LJ (2005) Growth factor receptors, lipid rafts and caveolae: an evolving story. Biochim Biophys Acta 1746:260–273

    Article  PubMed  CAS  Google Scholar 

  • Pike LJ (2006) Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function. J Lipid Res 47:1597–1598

    Article  PubMed  CAS  Google Scholar 

  • Prevostel C, Alice V, Joubert D et al (2000) Protein kinase C(alpha) actively downregulates through caveolae-dependent traffic to an endosomal compartment. J Cell Sci 113(Pt 14):2575–2584

    PubMed  CAS  Google Scholar 

  • Prior IA, Harding A, Yan J et al (2001) GTP-dependent segregation of H-ras from lipid rafts is required for biological activity. Nat Cell Biol 3:368–375

    Article  PubMed  CAS  Google Scholar 

  • Ratajczak P, Damy T, Heymes C et al (2003) Caveolin-1 and -3 dissociations from caveolae to cytosol in the heart during aging and after myocardial infarction in rat. Cardiovasc Res 57:358–369

    Article  PubMed  CAS  Google Scholar 

  • Razani B, Lisanti MP (2001) Two distinct caveolin-1 domains mediate the functional interaction of caveolin-1 with protein kinase A. Am J Physiol Cell Physiol 281:C1241–C1250

    PubMed  CAS  Google Scholar 

  • Razani B, Rubin CS, Lisanti MP (1999) Regulation of cAMP-mediated signal transduction via interaction of caveolins with the catalytic subunit of protein kinase A. J Biol Chem 274:26353–26360

    Article  PubMed  CAS  Google Scholar 

  • Razani B, Engelman JA, Wang XB et al (2001) Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem 276:38121–38138

    Article  PubMed  CAS  Google Scholar 

  • Razzaq TM, Ozegbe P, Jury EC et al (2004) Regulation of T-cell receptor signalling by membrane microdomains. Immunology 113:413–426

    Article  PubMed  CAS  Google Scholar 

  • Renner U, Glebov K, Lang T et al (2007) Localization of the mouse 5-hydroxytryptamine(1A) receptor in lipid microdomains depends on its palmitoylation and is involved in receptor-mediated signaling. Mol Pharmacol 72:502–513

    Article  PubMed  CAS  Google Scholar 

  • Resh MD (2006) Palmitoylation of ligands, receptors, and intracellular signaling molecules. Sci STKE 2006:re14

    Article  PubMed  Google Scholar 

  • Rodgers W, Farris D, Mishra S (2005) Merging complexes: properties of membrane raft assembly during lymphocyte signaling. Trends Immunol 26:97–103

    Article  PubMed  CAS  Google Scholar 

  • Rothberg KG, Heuser JE, Donzell WC et al (1992) Caveolin, a protein component of caveolae membrane coats. Cell 68:673–682

    Article  PubMed  CAS  Google Scholar 

  • Roy S, Plowman S, Rotblat B et al (2005) Individual palmitoyl residues serve distinct roles in H-ras trafficking, microlocalization, and signaling. Mol Cell Biol 25:6722–6733

    Article  PubMed  CAS  Google Scholar 

  • Rybin VO, Xu X, Steinberg SF (1999) Activated protein kinase C isoforms target to cardiomyocyte caveolae: stimulation of local protein phosphorylation. Circ Res 84:980–988

    PubMed  CAS  Google Scholar 

  • Sampson LJ, Hayabuchi Y, Standen NB et al (2004) Caveolae localize protein kinase A signaling to arterial ATP-sensitive potassium channels. Circ Res 95:1012–1018

    Article  PubMed  CAS  Google Scholar 

  • Sbaa E, Frerart F, Feron O (2005) The double regulation of endothelial nitric oxide synthase by caveolae and caveolin: a paradox solved through the study of angiogenesis. Trends Cardiovasc Med 15:157–162

    Article  PubMed  CAS  Google Scholar 

  • Schutzer WE, Reed JF, Mader SL (2005) Decline in caveolin-1 expression and scaffolding of G protein receptor kinase-2 with age in Fischer 344 aortic vascular smooth muscle. Am J Physiol Heart Circ Physiol 288:H2457–H2464

    Article  PubMed  CAS  Google Scholar 

  • Sedding DG, Hermsen J, Seay U et al (2005) Caveolin-1 facilitates mechanosensitive protein kinase B (Akt) signaling in vitro and in vivo. Circ Res 96:635–642

    Article  PubMed  CAS  Google Scholar 

  • Shack S, Wang XT, Kokkonen GC et al (2003) Caveolin-induced activation of the phosphatidylinositol 3-kinase/Akt pathway increases arsenite cytotoxicity. Mol Cell Biol 23:2407–2414

    Article  PubMed  CAS  Google Scholar 

  • Simons K, Ehehalt R (2002) Cholesterol, lipid rafts, and disease. J Clin Invest 110:597–603

    PubMed  CAS  Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  PubMed  CAS  Google Scholar 

  • Smythe GM, Rando TA (2006) Altered caveolin-3 expression disrupts PI(3) kinase signaling leading to death of cultured muscle cells. Exp Cell Res 312:2816–2825

    Article  PubMed  CAS  Google Scholar 

  • Smythe GM, Eby JC, Disatnik MH et al (2003) A caveolin-3 mutant that causes limb girdle muscular dystrophy type 1C disrupts Src localization and activity and induces apoptosis in skeletal myotubes. J Cell Sci 116:4739–4749

    Article  PubMed  CAS  Google Scholar 

  • Song KS, Li S, Okamoto T et al (1996) Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. J Biol Chem 271:9690–9697

    Article  PubMed  CAS  Google Scholar 

  • Song KS, Sargiacomo M, Galbiati F et al (1997) Targeting of a G alpha subunit (Gi1 alpha) and c-Src tyrosine kinase to caveolae membranes: clarifying the role of N-myristoylation. Cell Mol Biol 43:293–303

    PubMed  CAS  Google Scholar 

  • Sonveaux P, Martinive P, DeWever J et al (2004) Caveolin-1 expression is critical for vascular endothelial growth factor-induced ischemic hindlimb collateralization and nitric oxide-mediated angiogenesis. Circ Res 95:154–161

    Article  PubMed  CAS  Google Scholar 

  • Sprenger RR, Horrevoets AJ (2007) Proteomic study of caveolae and rafts isolated from human endothelial cells. Methods Mol Biol 357:199–213

    PubMed  CAS  Google Scholar 

  • Swaney JS, Patel HH, Yokoyama U et al (2006) Focal adhesions in (myo) fibroblasts scaffold adenylyl cyclase with phosphorylated caveolin. J Biol Chem 281:17173–17179

    Article  PubMed  CAS  Google Scholar 

  • Toya Y, Schwencke C, Couet J et al (1998) Inhibition of adenylyl cyclase by caveolin peptides. Endocrinology 139:2025–2031

    Article  PubMed  CAS  Google Scholar 

  • van Deurs B, Roepstorff K, Hommelgaard AM et al (2003) Caveolae: anchored, multifunctional platforms in the lipid ocean. Trends Cell Biol 13:92–100

    Article  PubMed  Google Scholar 

  • Venema VJ, Ju H, Zou R et al (1997) Interaction of neuronal nitric-oxide synthase with caveolin-3 in skeletal muscle. Identification of a novel caveolin scaffolding/inhibitory domain. J Biol Chem 272:28187–28190

    Article  PubMed  CAS  Google Scholar 

  • Volonte D, Galbiati F, Pestell RG et al (2001) Cellular stress induces the tyrosine phosphorylation of caveolin-1 (Tyr(14)) via activation of p38 mitogen-activated protein kinase and c-Src kinase. Evidence for caveolae, the actin cytoskeleton, and focal adhesions as mechanical sensors of osmotic stress. J Biol Chem 276:8094–8103

    Article  PubMed  CAS  Google Scholar 

  • von Zastrow M (2003) Mechanisms regulating membrane trafficking of G protein-coupled receptors in the endocytic pathway. Life Sci 74:217–224

    Article  CAS  Google Scholar 

  • Wang XM, Zhang Y, Kim HP et al (2006) Caveolin-1: a critical regulator of lung fibrosis in idiopathic pulmonary fibrosis. J Exp Med 203:2895–2906

    Article  PubMed  CAS  Google Scholar 

  • Willoughby D, Cooper DM (2007) Organization and Ca2+ regulation of adenylyl cyclases in cAMP microdomains. Physiol Rev 87:965–1010

    Article  PubMed  CAS  Google Scholar 

  • Woodman SE, Park DS, Cohen AW et al (2002) Caveolin-3 knock-out mice develop a progressive cardiomyopathy and show hyperactivation of the p42/44 MAPK cascade. J Biol Chem 277:38988–38997

    Article  PubMed  CAS  Google Scholar 

  • Wyse BD, Prior IA, Qian H et al (2003) Caveolin interacts with the angiotensin II type 1 receptor during exocytic transport but not at the plasma membrane. J Biol Chem 278:23738–23746

    Article  PubMed  CAS  Google Scholar 

  • Yamabhai M, Anderson RG (2002) Second cysteine-rich region of epidermal growth factor receptor contains targeting information for caveolae/rafts. J Biol Chem 277:24843–24846

    Article  PubMed  CAS  Google Scholar 

  • Yamada E (1955) The fine structure of the gall bladder epithelium of the mouse. J Biophys Biochem Cytol 1:445–458

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Okumura S, Oka N et al (1999) Downregulation of caveolin expression by cAMP signal. Life Sci 64:1349–1357

    Article  PubMed  CAS  Google Scholar 

  • Younes A, Lyashkov AE, Graham D et al (2008) Ca 2+-stimulated basal adenylyl cyclase activity localization in membrane lipid microdomains of cardiac sinoatrial nodal pacemaker cells. J Biol Chem [ePub ahead of print 10.1074/jbc.M707540200]

    Google Scholar 

  • Zhang B, Peng F, Wu D et al (2007) Caveolin-1 phosphorylation is required for stretch-induced EGFR and Akt activation in mesangial cells. Cell Signal 19:1690–1700

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Loh HH, Law PY (2006) Adenylyl cyclase superactivation induced by long-term treatment with opioid agonist is dependent on receptor localized within lipid rafts and is independent of receptor internalization. Mol Pharmacol 69:1421–1432

    Article  PubMed  CAS  Google Scholar 

  • Zhuang L, Lin J, Lu ML et al (2002) Cholesterol-rich lipid rafts mediate akt-regulated survival in prostate cancer cells. Cancer Res 62:2227–2231

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Patel, H.H., Murray, F., Insel, P.A. (2008). G-Protein-Coupled Receptor-Signaling Components in Membrane Raft and Caveolae Microdomains. In: Klussmann, E., Scott, J. (eds) Protein-Protein Interactions as New Drug Targets. Handbook of Experimental Pharmacology, vol 186. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72843-6_7

Download citation

Publish with us

Policies and ethics