Skip to main content

Cytochrome P-450 Oxidations and the Generation of Biologically Reactive Intermediates

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 283))

Abstract

Cytochrome P-450 (P-450) enzymes are involved in the oxidation of many steroids, eicosanoids, pesticides, drugs, and carcinogens. Considerable evidence has been accrued over the years to support the view that the majority of chemical carcinogens require bioactivation in order to elicit tumor initiation, and many toxic chemicals other than carcinogens also require bioactivation. The P-450 enzymes are probably involved to a greater extent than any other enzymes in the generation of the biological reactive intermediates involved in such toxicities (for reviews see Nelson, 1982; Guengerich and Liebler, 1985; Nelson and Harvison, 1987; Kadlubar and Hammons, 1987; Guengerich, 1988). Thus, a proper knowledge of these enzymes and the chemistry involved in catalysis is requisite for a rational understanding of schemes of toxicity and carcinogenesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Augusto, O., Beilan, H. S., and Ortiz de Montellano, P. R. (1982). The catalytic mechanism of cytochrome P-450. Spin-trapping evidence for one-electron substrate oxidation. J. Biol. Chem. 257, 11288–11295.

    CAS  PubMed  Google Scholar 

  • Baba, T., Yamada, H., Oguri, K., and Yoshimura, H. (1988). Participation of cytochrome P-450 isozymes in N-demethylation, N-hydroxylation and aromatic hydroxylation of methamphetamine. Xenobiotica 18, 475–484.

    Article  CAS  PubMed  Google Scholar 

  • Bondon, A., Macdonald, T. L., Harris, T. M., and Guengerich, F. P. (1989). Oxidation of cyclobutylamines by cytochrome P-450: Mechanism-based inactivation, adduct formation, ring expansion, and nitrone formation. J. Biol. Chem. 264, 1988–1997.

    CAS  PubMed  Google Scholar 

  • Böcker, R. H., and Guengerich, F. P. (1986). Oxidation of 4-aryl-and 4-alkyl-substituted 2,6-dimethy1–3,5-bis-(alkoxycarbony1)-1,4-dihydropyridines by human liver microsomes and immunochemical evidence for the involvement of a form of cytochrome P-450. J. Med. Chem. 29, 1596–1603.

    Article  PubMed  Google Scholar 

  • Burka, L. T., Guengerich, F. P., Willard, R. J., and Macdonald, T. L. (1985). Mechanism of cytochrome P-450 catalysis. Mechanism of N-dealkylation and amine oxide deoxygenation. J. Am. Chem. Soc. 107, 2549–2551.

    Article  CAS  Google Scholar 

  • Burka, L. T., Thorsen, A., and Guengerich, F. P. (1980). Enzymatic monooxygenation of halogen atoms: Cytochrome P-450-catalyzed oxidation of iodobenzene by iodosobenzene. J. Am. Chem. Soc. 102, 7615–7616.

    Article  CAS  Google Scholar 

  • Dinnocenzo, J. P., and Banach, T. E. (1989). Deprotonation of tertiary amine cation radicals. A direct experimental approach. J. Am. Chem. Soc. 111, 8646–8653.

    Google Scholar 

  • Garrison, J. M., and Bruice, T. C. (1989). Intermediates in the epoxidation of alkenes by cytochrome P-450 models. 3. Mechanism of oxygen transfer from substyituted oxochromium (V) porphyrins to olefinic substrates. J. Am. Chem. Soc. 111, 191–198.

    Article  CAS  Google Scholar 

  • Griffin, B. W., and Ting, P. L. (1978). Mechanism of N-demethylation of aminopyrine by hydrogen peroxide catalyzed by horseradish peroxidase, not myoglobin, and protohemin. Biochemistry 17, 2206–2211.

    Article  CAS  PubMed  Google Scholar 

  • Groves, J. T., and Watanabe, Y. (1986). On the mechanism of olefin epoxidation by oxo-iron porphyrins. Direct observation of an intermediate. J. Am. Chem. Soc. 108, 507–508.

    Article  CAS  PubMed  Google Scholar 

  • Groves, J. T., Avaria-Neisser, G. E., Fish, K. M., Imachi, M., and Kuczkowski, R. L. (1986). Hydrogen-deuterium exchange during propylene oxidation by cytochrome P-450. J. Am. Chem. Soc. 108, 3837–3838.

    Article  CAS  Google Scholar 

  • Groves, J. T., McClusky, G. A., White, R. E., and Coon, M. J. (1978). Aliphatic hydroxylation by highly purified liver microsomal cytochrome P-450. Evidence for a carbon radical intermediate. Biochem. Biophys. Res. Commun. 76, 541–549.

    Google Scholar 

  • Guengerich, F. P. (1984). Oxidation of sparteines by cytochrome P-450: Evidence against the formation of N-oxides. J. Med. Chem. 27, 1101–1103.

    Article  CAS  PubMed  Google Scholar 

  • Guengerich, F. P. (1987). Oxidative cleavage of carboxylic esters by cytochrome P450. J. Biol. Chem. 262, 8459–8462.

    CAS  PubMed  Google Scholar 

  • Guengerich, F. P. (1988). Roles of cytochrome P-450 enzymes in chemical carcinogenesis and cancer chemotherapy. Cancer Res. 48, 2946–2954.

    CAS  Google Scholar 

  • Guengerich, F. P. (1989a). Biochemical characterization of human cytochrome P-450 enzymes. Ann. Rev. Pharmacol. Toxicol. 29, 241–264.

    Article  CAS  Google Scholar 

  • Guengerich, F. P. (1989b). Oxidation of halogenated compounds by metalloporphyrins, peroxidases, and cytochrome P-450. J. Biot. Chem. 264, 17198–17205.

    CAS  Google Scholar 

  • Guengerich, F. P. (1990a). Enzymatic oxidation of xenobiotic chemicals. CRC Crit.Rev. Biochem.,in press.

    Google Scholar 

  • Guengerich, F. P. (1990b). Low kinetic hydrogen isotope effects in the oxidation of 1,4-dihydro-2,6-dimethyl-4-(2-nitrophenyl)-3,5-pyridinedicarboxylic acid dimethyl ester (nifedipine) by cytochrome P-450 enzymes are consistent with anelectron-proton-electron transfer mechanism. Chem. Res. Toxicol.,in press.

    Google Scholar 

  • Guengerich, F. P., and Bäcker, R. H. (1988). Cytochrome P-450-catalyzed dehydrogenation of 1,4-dihydropyridines. J. Biot. Chem. 263, 8168–8175.

    CAS  Google Scholar 

  • Guengerich, F. P., and Liebler, D. C. (1985). Enzymatic activation of chemicals to toxic metabolites. CRC Crit. Rev. Toxicol. 14, 259–307.

    Article  CAS  Google Scholar 

  • Guengerich, F. P., and Macdonald, T. L. (1984). Chemical mechanisms of catalysis by cytochromes P-450: A unified view. Acct. Chem. Res. 17, 9–16.

    Article  CAS  Google Scholar 

  • Guengerich, F. P., and Macdonald, T. L. (1990). Catalytic mechanism of cytochrome P-450. FASEB J,in press.

    Google Scholar 

  • Guengerich, F. P., Peterson, L. A., and Bäcker, R. H. (1988). Cytochrome P-450-catalyzed hydroxylation and carboxylic acid ester cleavage of Hantzsch pyridine esters. J. Biol. Chem. 263, 8176–8183.

    CAS  PubMed  Google Scholar 

  • Guengerich, F. P., Willard, R. J., Shea, J. P., Richards, L. E., and Macdonald, T. L. (1984). Mechanism-based inactivation of cytochrome P-450 by heteroatomsubstituted cyclopropanes and formation of ring-opened products. J. Am. Chem. Soc. 106, 6446–6447.

    Article  CAS  Google Scholar 

  • Hammerich, O., and Parker, V. D. (1984). Kinetics and mechanisms of reaction of organic cation radicals in solution. Adv. Phys. Org. Chem. 20, 55–189.

    Article  CAS  Google Scholar 

  • Hecker, M., and Ullrich, V. (1989). On the mechanism of prostacyclin and thromboxane A2 biosynthesis. J. Biol. Chem. 264, 141–150.

    CAS  PubMed  Google Scholar 

  • Kadlubar, F. F., and Hammons, G. J. (1987). The role of cytochrome P-450 in the metabolism of chemical carcinogens. In Mammalian Cytochromes P-450 (F. P.Guengerich, Ed.), Vol. II, pp. 81–130, CRC Press, Boca Raton, Florida, USA.

    Google Scholar 

  • Kaminsky, L. S., Dannan, G. A., and Guengerich, F. P. (1984). Composition of cytochrome P-450 isozymes from hepatic microsomes of C57BL/6 and DBA/2 mice assessed by warfarin metabolism, immunoinhibition, and immunoelectrophoresis with anti-(rat cytochrome P-450). Eur. J. Biochem. 141, 141–148.

    Article  CAS  PubMed  Google Scholar 

  • Kronbach, T., Larabee, T. M., and Johnson, F. F. (1989). Hybrid cytochromes P450 identify a substrate binding domain in P450 IIC5 and P450 IIC4. Proc. Natl. Acad. Sci., USA 86, 8262–8265.

    CAS  Google Scholar 

  • Lau, S. S., Monks, T. J., and Gillette, J. R. (1984). Multiple reactive metabolites derived from bromobenzene. Drug Metab. Disp. 12, 291–296.

    CAS  Google Scholar 

  • Lee, J. S., Jacobsen, N. E., and Ortiz de Montellano, P. R. (1988). 4-Alkyl radical extrusion in the cytochrome P-450-catalyzed oxidation of 4-alkyl-1,4dihydropyridines. Biochemistry 27, 7703–7710.

    Google Scholar 

  • Liebler, D. C., and Guengerich, F. P. (1983). Olefin oxidation by cytochrome P-450: Evidence for group migration in catalytic intermediates formed with vinylidene chloride and trans-l-phenyl-1-butene. Biochemistry 22, 5482–5489.

    Article  CAS  PubMed  Google Scholar 

  • Lindberg, R-L. P., and Negishi, M. (1989). Alteration of mouse cytochrome P450coh substrate specificity by mutation of a single amino-acid residue. Nature (London) 339, 632–634.

    CAS  Google Scholar 

  • Macdonald, T. L., Gutheim, W. G., Martin, R. B., and Guengerich, F. P. (1989). Oxidation of substituted N,N-dimethylanilines by cytochrome P-450: Estimation of the effective oxidation-reduction potential of cytochrome P-450. Biochemistry 28, 2071–2077.

    Article  CAS  PubMed  Google Scholar 

  • Miwa, G. T., Walsh, J. S., Kedderis, G. L. and Hollenberg, P. F. (1983). The use of intramolecular isotope effects to distinguish between deprotonation and hydrogen atom abstraction mechanisms in cytochrome P-450 and peroxidase-catalyzed N-demethylation reactions. J. Biol. Chem. 258, 14445–14449.

    CAS  PubMed  Google Scholar 

  • Nagata, K., Liberato, D. J., Gillette, J. R., and Sesame, H. A. (1986). An unusual metabolite of testosterone. 17b-Hydroxy-4,6-androstadiene-3-one. Drug Metab. Disp. 14, 559–565.

    CAS  Google Scholar 

  • Nebert, D. W., Nelson, D. R., Adesnik, M., Coon, M. J., Estabrook, R. W., Gonzalez, F. J., Guengerich, F. P., Gunsalus, I. C., Johnson, E. F., Kemper, B., Levin, W., Phillips, I. R., Sato, R., and Waterman, M. R. (1989). The P450 superfamily: Update on listing of all genes and recommended nomenclature of the chromosomal loci. DNA 8, 1–13.

    CAS  Google Scholar 

  • Nelson, S. D. (1982). Metabolic activation and drug toxicity. J. Med. Chem. 25, 753–765.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, S. D. and Harvison, P. J. (1987). Roles of cytochromes P-450 in chemically induced cytotoxicity. In Mammalian Cytochromes P-450 ( F. P. Guengerich, Ed.), Vol. II, pp. 19–79, CRC Press, Boca Raton, Florida, USA.

    Google Scholar 

  • Ortiz de Montellano, P. R. (1986). Oxygen activation and transfer. In Cytochrome P-450 ( P. R. Ortiz de Montellano, Ed.), pp. 217–271, Plenum Press, New York, USA.

    Google Scholar 

  • Ortiz de Montellano, P. R. (1987). Control of the catalytic activity of prosthetic heme by the structure of hemoproteins. Acct. Chem. Res. 20, 289–294.

    Article  Google Scholar 

  • Ortiz de Montellano, P. R. (1989). Cytochrome P-450 catalysis: radical intermediates and dehydrogenation intermediates. Trends Pharmacol. Sci. 10, 354–359.

    Article  Google Scholar 

  • Ortiz de Montellano, P. R., Kunze, K. L., Beilan, H. S., and Wheeler, C. (1982). Destruction of cytochrome P-450 by vinyl fluoride, fluroxene, and acetylene. Evidence for a radical intermediate in olefin oxidation. Biochemistry 21, 1331–1339.

    Article  Google Scholar 

  • Rettie, A. E., Rettenmeier, A. W., Howeld, W. N., and Baillie, T. A. (1987) Cytochrome P-450 catalyzed formation of D4-VPA, a toxic metabolite of valproic acid. Science (Washington, D. C.) 235, 890–893.

    CAS  Google Scholar 

  • Shimada, T., and Guengerich, F. P. (1989). Evidence for cytochrome P-45ONF, the nifedipine oxidase, being the principal enzyme involved in the bioactivation of aflatoxins in human liver. Proc. Natl. Acad. Sci. U.S.A. 86, 462–465.

    Article  CAS  PubMed  Google Scholar 

  • Shimada, T., Iwasaki, M., Martin, M. V., and Guengerich, F. P. (1989a). Human liver microsomal cytochrome P-450 enzymes involved in the bioactivation of pro-carcinogens detected by umu gene response in Salmonella typhimurium TA1535/pSK1002. Cancer Res. 49, 3218–3228.

    CAS  PubMed  Google Scholar 

  • Shimada, T., Martin, M. V., Pruess-Schwartz, D., Marnett, L. J., and Guengerich, F. P. (1989b). Roles of individual forms of human cytochrome P-450 enzymes in the bioactivation of benzo(a)pyrene, 7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene, and other dihydrodiol derivatives of polycyclic aromatic hydrocarbons. Cancer Res. 49, 6304–6312.

    CAS  PubMed  Google Scholar 

  • Shono, T., Toda, T., and Oshino, N. (1982). Electron transfer from nitrogen in microsomal oxidation of amine and amide. Simulation of microsomal oxidation by anodic oxidation. J. Am. Chem. Soc. 104, 2639–2641.

    Article  CAS  Google Scholar 

  • Traylor, T. G., and Miksztal, A. R. (1989). Alkene epoxidations catalyzed by iron(III), manganese(III), and chromium(III) porphyrins. Effects of metal and porphyrin substituents on selectivity and regiochemistry of epoxidation. J. Am. Chem. Soc. 111, 7443–7448.

    Article  CAS  Google Scholar 

  • Umbenhauer, D. R., Martin, M. V., Lloyd, R. S., and Guengerich, F. P. (1987). Cloning and sequence determination of a complementary DNA related to human liver microsomal cytochrome P-450 S-mephenytoin 4-hydroxylase. Biochemistry 26, 1094–1099.

    Article  CAS  PubMed  Google Scholar 

  • Van der Zee, J., Duling, D. R., Mason, R. P., and Eling, T. E. (1989). The oxidation of N-substituted aromatic amines by horseradish peroxidase. J. Biol. Chem. 264, 19828–19836.

    PubMed  Google Scholar 

  • Williams, D. E., Reed, R. L., Kedzierski, B., Guengerich, F. P., and Buhler, D. C. (1989). Bioactivation and detoxication of the pyrrolizidine alkaloid senecionine by cytochrome P-450 isozymes in rat liver. Drug Metab. Disp. 17, 387–392.

    CAS  Google Scholar 

  • Yamaguchi, K., Takahara, Y., and Fueno, T. (1986). Ab-initio molecular orbital studies of structure and reactivity of transition metal-oxo compounds. In App/ied Quantum Chemistry ( V. H. Smith, Jr., Ed.), pp. 155–184, D. Reidel Publishing, New York, USA.

    Chapter  Google Scholar 

  • Yoo, J-S. H., Guengerich, F. P., and Yang, C. S. (1988). Metabolism of N-nitrosodi-allcylamines in human liver microsomes. Cancer Res. 88, 1499–1504.

    Google Scholar 

  • Ziegler, D. M., Ansher, S. S., Nagata, T., Kadlubar, F. F., and Jakoby, W. B. (1988). N-methylation: Potential mechanism for metabolic activation of carcinogenic primary arylamines. Proc. Natl. Acad. Sci. USA 85, 2514–2517.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Guengerich, F.P., Shimada, T., Bondon, A., Macdonald, T.L. (1991). Cytochrome P-450 Oxidations and the Generation of Biologically Reactive Intermediates. In: Witmer, C.M., Snyder, R.R., Jollow, D.J., Kalf, G.F., Kocsis, J.J., Sipes, I.G. (eds) Biological Reactive Intermediates IV. Advances in Experimental Medicine and Biology, vol 283. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5877-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5877-0_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5879-4

  • Online ISBN: 978-1-4684-5877-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics