Table 1

Structural models evaluated to describe the disposition of VPA and VG in the presence and absence of PRB

ModelParameters Describing the Disposition of VPA and VG1-a
ABCDEF
1Ksp Kcp Kfo Kfg Ksg Kcg
2N.A.Kcp Kfo Kfg Ksg Kcg
3N.A.Kcp Kfo Kfg Ksg Vo max,cg
4N.A.Kcp Kfo Kfg Ksg Km,cgVmax,cg
5N.A.Kcp Kfo Km,fgVmax,fg K sg Kcg
6N.A.Kcp Kfo Km,fgVmax,fg Ksg Vo max,cg
7N.A.Kcp Kfo Km,fgVmax,fg Ksg Km,cgVmax,cg
8N.A.Kcp Km,foVmax,fo Kfg Ksg Kcg
9N.A.Kcp Km,foVmax,fo Kfg Ksg Vo max,cg
10N.A.Kcp Km,foVmax,fo Kfg Ksg Km,cgVmax,cg
  • Ksp, first-order rate constant for sinusoidal uptake of parent; Kcp, first-order rate constant for canalicular egress of parent; Kfo, first-order formation rate constant for oxidative metabolites; Km,fo, Michaelis-Menten constant for formation of oxidative metabolites; Vmax,fo, maximal formation velocity of oxidative metabolite; Kfg, first-order formation rate constant for VG; Km,fg, Michaelis-Menten constant for formation of VG; Vmax,fg, maximal formation of VG; Ksg, first-order rate constant for sinusoidal egress of VG; Kcg, first-order rate constant for canalicular egress of VG; Vomax,cg, zero-order rate constant for canalicular egress of VG; Km,cg, Michaelis-Menten constant for canalicular egress of VG; Vmax,cg, maximal velocity for canalicular egress of VG; N.A., not applicable to that particular model.

  • 1-a  Refer to scheme in Fig. 1.