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We optimized the solvent for dissolving CS tear gas agent for application on mouse ears. 

We tested common solvents such as dimethyl sulfoxide (DMSO) and dichloromethane (DCM). 

CS dissolved in DCM remained like a powder on the ears after application. This might be 

explained by the higher vapor pressure of DCM (350 Torr) compared to the lower vapor pressure 

of DMSO (0.6 Torr). Application of CS tear gas agent dissolved in DMSO gave robust 

inflammation response in mouse models compared to DCM (Figure S1). Therefore, we chose 

DMSO as a solvent for CS tear gas skin injury studies. Further, DCM has relatively more toxic 

effects compared to DMSO.  

 

 

 

 

 

 

 

Figure S1. Effects of solvents on CS tear gas agent-induced cutaneous inflammation. (A) 

Study paradigm. Right ears of C57BL/6 male mice were exposed to 20 µL of CS (200 mM, 

dissolved in either DMSO or DCM) and left ears to DMSO or DCM (vehicle, 20 µL). At 6.5 

hours post-CS exposure, mice were euthanized, ear thickness was measured, and ear punch 

biopsies were collected.   (B-D) Ear thickness, ear punch biopsy weights, and pro-

inflammatory cytokine (IL-1β) assessment. Data were analyzed by either Student’s t-test or 

one-way ANOVA with Tukey’s post-hoc multiple comparison test. Data are presented as 

mean ± SEM, n=5 per group. * p≤0.05, ** p≤0.01, *** p≤0.001, ns = non-significant.   
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We optimized the concentration of CS tear gas for the mouse ear inflammation model. 

We dissolved CS in DMSO at various molar concentrations (50, 100, and 200 mM) and applied 

to mouse ears. Across studied parameters (ear thickness, ear punch biopsy weights, extravasation 

of inflammatory exudate, and IL-1β pro-inflammatory cytokine), there was no statistically 

significant difference among the tested CS concentrations (Figure S2). We chose 200 mM 

concentration as this concentration gave a robust injury phenotype. Further, we wanted to test 

potential therapeutic compounds in a model that represents severe injury phenotype in humans.  

 

 

 

 

 

Figure S2. Titration of CS tear gas concentration for optimization of mouse ear skin 

injury model. (A) Study paradigm. Right ears of C57BL/6 male mice were exposed to 20 µL 

of CS at various molar contrations (50, 100, and 200 mM, dissolved in DMSO) and left ears 

to DMSO (vehicle, 20 µL). At 4 hours post-CS exposure, mice were injected with IRDye 

800CW contrast agent intravenously (i.v) and in vivo imaging was performed at 5.5 hours 

post-CS exposure.  At 6.5 hours post-CS exposure, mice were euthanized, ear thickness was 

measured, and ear punch biopsies were collected.   (B-F) Ear thickness, ear punch biopsy 

weights, extravasation of pro-inflammatory exudate, and pro-inflammatory cytokine (IL-1β) 

assessments. Data were analyzed by one-way ANOVA with Tukey’s post-hoc multiple 

comparison test. Data are presented as mean ± SEM, n=5 per group. * p≤0.05, ** p≤0.01, 

*** p≤0.001, **** p≤0.0001, ns = non-significant.   
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To assess the decontamination efficacy of water washing after skin exposure to CS tear 

gas agent, 30 minutes after CS exposure, we washed both surfaces of ears three times with fresh 

cotton applicators moistened in water. Decontamination of CS-exposed mouse ear skin with 

water washing did not improve the studied parameters such as ear thickness, ear punch biopsy 

weights, and IL-1β pro-inflammatory cytokine measured in ear punch biopsy homogenate 

samples (Figure S3).  

 

 

 

 

 

Figure S3. Decontamination of CS tear gas exposure with water washing. (A) Study 

paradigm. Right ears of C57BL/6 male mice were exposed to 20 µL of 200 mM CS 

(dissolved in DMSO) and left ears to DMSO (vehicle, 20 µL). At 6.5 hours post-CS 

exposure, mice were euthanized, ear thickness was measured, and ear punch biopsies were 

collected.   (B-D) Ear thickness, ear punch biopsy weights, and pro-inflammatory cytokine 

(IL-1β) assessments. Data were analyzed by Student’s t-test. Data are presented as mean ± 

SEM, n=5 per group. ns = non-significant. 
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Table S1. Development of TRPA1 inhibitor pipeline, species activity, and efficacy in human 

TRPA1 

 

Name Species activity Human IC50 

values (nM) 

Developed by Ref 

HC-030031 Mouse, rat, and human 6200  Hydra 

Biosciences 

(McNamara et al., 

2007) 

AP18 Mouse, rat, and human 3100  Novartis (Petrus et al., 2007) 

ChemBridge-

5861528 

Rat, and human 4900  Orion Pharma (Wei et al., 2009) 

A-967079 Mouse, rat, rabbit, pig 

and human 

67  Abbott (McGaraughty et 

al., 2010) 

GRC17536 Guinea pig and human <10  Glenmark (India, 2014) 

AMG0902 Mouse, rat, rabbit, pig, 

and human 

131  Amgen (Lehto et al., 2016) 

BI01305834 Guinea pig and human 40  Boehringer 

Ingelheim 

(van den Berg et 

al., 2021) 

BAY-390 Rat and human 16 Bayer (Mesch et al., 

2023) 

GDC-0334 Mouse, rat, guinea pig, 

and human 

1.7  Genentech (Balestrini et al., 

2021) 

GDC-6599 

(compound 20) 

Mouse, rat, guinea pig, 

rabbit, pig, and human 

0.9 Genentech (Terrett et al., 

2021) 

Additional investigational TRPA1 antagonists have been disclosed and discussed elsewhere 

(Achanta and Jordt, 2020; Chen and Terrett, 2020; Talavera et al., 2020). 
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