In Vitro and In Silico Analyses of the Inhibition of Human Aldehyde Oxidase by

Bazedoxifene, Lasofoxifene, and Structural Analogues

Shiyan Chen, Karl Austin-Muttitt, Linghua Harris Zhang, Jonathan G.L. Mullins, and Aik Jiang Lau

Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore (S.C., A.J.L.); Institute of Life Science, Swansea University Medical School, United Kingdom (K.A-M, J.G.L.M.); NanoBioTec, LLC., Whippany, New Jersey, U.S.A. (L.H.Z.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (A.J.L.)

1

Supplemental Fig. S1. Chemical structures of acolbifene, bazedoxifene, lasofoxifene, and select structural analogues.

Supplemental Fig. S2. Carbazeran 4-oxidation catalyzed by human liver cytosol, kidney cytosol, lung cytosol, and recombinant AOX1 enzyme as a function of amount of cytosolic protein. (A) Varying amount of liver cytosol (1, 2, 5, 10, 15, 20, or 30 μ g protein) was incubated with carbazeran (1 μ M) at 37°C for 3 min. (B-D) Varying amount of kidney cytosol (0, 25, 50, 100, 150, 200, or 250 μ g protein) (B), lung cytosol (0, 50, 100, 150, 200, 250, or 300 μ g protein) (C), or recombinant AOX1 enzyme (0, 5, 10, 20, 30, 40, 50 μ g protein) (D) was incubated with carbazeran (16 μ M) at 37°C for 45 min. Data are expressed as mean \pm S.E.M. of three independent experiments.

Supplemental Fig. S3. Carbazeran 4-oxidation catalyzed by human liver cytosol, kidney cytosol, lung cytosol, and recombinant AOX1 enzyme as a function of incubation time. (A) Liver cytosol (20 μ g protein) was incubated with carbazeran (1 μ M) at 37°C for 0, 2, 3, 5, 7, 10, or 15 min. (B-D) Kidney cytosol (200 μ g protein) (B), lung cytosol (150 μ g protein) (D), or recombinant AOX1 enzyme (30 μ g protein) (D) was incubated with carbazeran (16 μ M) at 37°C for 0, 15, 30, 45, 60, 75, or 90 min. Data are expressed as mean ± S.E.M. of three independent experiments.

Supplemental Fig. S4. Carbazeran 4-oxidation catalyzed by human liver cytosol, kidney cytosol, lung cytosol, and recombinant AOX1 enzyme. (A) Pooled liver cytosol (20 μ g protein) was incubated with varying concentrations of carbazeran (0.125, 0.25, 0.5, 1, 2, 4, 8, 16, or 32 μ M) at 37°C for 5 min. (B) Pooled kidney cytosol (200 μ g protein) was incubated with varying concentrations of carbazeran (0.5, 1, 2, 4, 8, 16, 24, or 40 μ M) at 37°C for 75 min. (C) Pooled lung cytosol (150 μ g protein) was incubated with carbazeran (1, 2, 4, 6, 8, 12, 16, 24, or 32 μ M) at 37°C for 75 min. (D) Recombinant AOX1 enzyme (30 μ g protein) was incubated with carbazeran (1, 2, 4, 8, 16, 24, or 80 μ M) at 37°C for 15 min. Data were analyzed by nonlinear least-squares regression and fitted into the Michaelis-Menten (A, C, D) or substrate inhibition model (B). Data are expressed as mean \pm S.E.M. of three or four independent experiments conducted in duplicate.

Supplemental Fig. S5. O^6 -Benzylguanine 8-oxidation catalyzed by human liver and kidney cytosol. (A) Pooled liver cytosol (20 µg protein) was incubated with varying concentrations of O^6 -benzylguanine (1, 2.5, 5, 10, 25, 50, 100, 200, 300, or 400 µM) at 37°C for 5 min. (B) Pooled kidney cytosol (200 µg protein) was incubated with varying concentrations of O^6 -benzylguanine (5, 25, 50, 100, 200, 400, or 600 µM) at 37°C for 75 min. Data are expressed as mean ± S.E.M. of three independent experiments.

Supplemental Fig. S6. Comparative effect of acolbifene, bazedoxifene, lasofoxifene, tamoxifen, and raloxifene on carbazeran 4-oxidation catalyzed by human kidney cytosol and recombinant AOX1 enzyme. (A) A SERM (25 μ M), valproic acid (50 μ M; negative control), or DMSO (1% v/v; vehicle) was co-incubated with carbazeran (2 μ M) and pooled kidney cytosol (200 μ g protein) at 37°C for 75 min. (B) A SERM (25 μ M), valproic acid (50 μ M; negative control), or DMSO (1% v/v; vehicle) was co-incubated with carbazeran (4 μ M) and recombinant AOX1 enzyme (30 μ g protein) at 37°C for 15 min. Data are expressed as percentage of activity in the vehicle-treated control group and expressed as mean \pm S.E.M. of three independent experiments conducted in duplicate. *Significantly different from the vehicle-treated control group (p < 0.05). The rate of reaction in the vehicle-treated control group was 0.50 \pm 0.03 pmol/min/mg protein (A) and 24 \pm 0.7 pmol/min/mg protein (B).

Supplemental Fig. S7. Effect of preincubation of human liver cytosol with SERMs on carbazeran 4-oxidation. Human liver cytosol (100 µg protein) was preincubated with a SERM (10 µM lasofoxifene, 10 µM bazedoxifene, 10 µM acolbifene, 10 µM tamoxifen, 0.02 µM raloxifene, or 10 µM hydralazine), or vehicle (0.5% v/v DMSO) at 37°C for 0 or 30 min. An aliquot (10 µl) of the primary incubation mixture was incubated with carbazeran (3 µM) for 5 min. Data are expressed as percentage of activity in the vehicle-treated control group that was not subjected to preincubation (1164 ± 52 pmol/min/mg protein) and expressed as mean ± S.E.M. for three independent experiments.

SUPPLEMENTAL TABLE S1

Enzyme Source	Amount of Cytosolic Protein (μg)	Incubation Time (min)	Substrate (Carbazeran) Concentration (µM)	
Human liver cytosol	20	5	3	
Human kidney cytosol	200	75	2	
Human lung cytosol	150	75	N/A	
Human Recombinant AOX1	30	15	4	

Shown are the carbazeran 4-oxidation assay conditions in the AOX1 inhibition experiments.

N/A, not applicable.

SUPPLEMENTAL TABLE S2

Human AOX1 protein content and enzyme kinetics of carbazeran 4-oxidation and O^6 -benzylguanine 8-oxidation and catalyzed by human tissue cytosols or recombinant AOX1.

 V_{max} , k_{cat} , apparent K_{m} , corrected K_{m} , and unbound intrinsic clearance (Clint,u) were calculated as described under *Materials and Methods*. Data are expressed as mean \pm S.E.M. for three or four independent experiments conducted in duplicate.

Sample	AOX1 Protein	V_{\max}	kcat (min ⁻¹)	Apparent K _m (μM)	Corrected $K_{\rm m}$ (μ M) ^{<i>a</i>}	Cl _{int,u}	Cl _{int,u}		
	Content (pmol/mg	(pmol/min/mg				(µl/min/mg	(µl/min/pmol		
	protein)	protein)				protein)	AOX1)		
Carbazeran 4-Oxidation									
Liver cytosol	63.8 ± 4.5	1290 ± 138	20.2 ± 2.2	6.33 ± 0.66	5.93 ± 0.62	217 ± 5	3.41 ± 0.08		
Kidney cytosol	21.0 ± 1.3	0.77 ± 0.03^{b}	0.04 ± 0.001^b	1.63 ± 0.30^b	1.52 ± 0.28^{b}	0.55 ± 0.07^b	0.03 ± 0.003^{b}		
Lung cytosol	1.8 ± 0.1	0.22 ± 0.02^b	0.12 ± 0.01^b	3.30 ± 0.44^b	3.09 ± 0.41^b	0.07 ± 0.01^b	0.04 ± 0.004^{b}		
Recombinant AOX1	n.d.	39.1 ± 2.6^b	N/A	4.1 ± 0.08^b	3.8 ± 0.08^{b}	10.3 ± 0.9^{b}	N/A		
O ⁶ -Benzylguanine 8-Oxidation									
Liver cytosol ^c	63.8 ± 4.5	1254 ± 102	19.7 ± 1.6	70 ± 8	71 ± 8	18 ± 2	0.28 ± 0.03		
Kidney cytosol	21.0 ± 1.3	1.2 ± 0.1^b	0.06 ± 0.005^b	46 ± 5^b	46 ± 5^b	0.03 ± 0.001^b	0.001 ± 0.000^b		

^{*a*}, $f_u = 0.94$ (carbazeran) or 1.01 (*O*⁶-benzylguanine) was used in the calculations of correct K_m and $Cl_{int,u}$ (Xie et al., 2019).

^{*b*}, Significantly different from the human liver cytosol group (p < 0.05).

^{*c*}, Data from Xie et al., 2019.

Turnover number (k_{cat}) was calculated by dividing V_{max} by AOX1 protein concentration.

n.d., not determined.

LLOQ, lower limit of quantification. N/A, not applicable.