1 Supplemental Data

2	New multi-target antagonists of α_{1A-} , α_{1D-} adrenoceptors and 5-HT _{1A} receptors reduce
3	human hyperplastic prostate cell growth and the increase of intraurethral pressure
4	
5	Jéssica B Nascimento-Viana, Aline R Carvalho, Luiz Eurico Nasciutti, Rocío
6	Alcántara-Hernández, Fernanda Chagas-Silva, Pedro A R Souza, Luiz Antônio S
7	Romeiro, J Adolfo García-Sáinz, François Noël, and Claudia Lucia Martins Silva
8	Journal of Pharmacology and Experimental Therapeutics
9	
10	Supplemental Methods
11	Binding assays: off-target BPH receptors
12	In all cases, the assay volume was 0.5 ml and the radioligand depletion at the
13	end of the experiments was less than 15% with the exception of the assays with [³ H]-
14	QNB in rat cortex preparation (around 40%) (Chagas-Silva et al., 2014).
15	For 5-HT _{2A} receptor assays, 150 μ g cortical membrane protein were incubated
16	with LTDs $(10^{-10} - 10^{-4} \text{ M})$ in binding buffer containing 1 nM [³ H]-ketanserin and 100
17	nM prazosin, for 15 min at 37°C. Nonspecific binding was determined in the presence
18	of 1 µM ketanserin.
19	For native α_2 -adrenoceptors, 150 µg cortical membrane protein were incubated
20	with LTDs $(10^{-8} - 10^{-4} \text{ M})$ in binding buffer containing 1 nM [³ H]RX821002, for 60 min
21	at 30°C. Nonspecific binding was determined in the presence of 100 μ M L-adrenaline
22	bitartrate.
23	For native muscarinic receptors, 150 μ g cortical membrane protein were
24	incubated with 0.1 nM [³ H]QNB, 50 mM Tris-HCl in the presence of LDTs $(10^{-6} - 10^{-3})$

25	M), at 25° C for 60 min.	Atropine sulphate (10	μM) was ι	used to deter	mine non-sp	ecific
26	binding (Chagas-Silva et	al., 2014).				

27

28 Statistical analysis

Otherwise indicated, data are expressed as means and SD. The significance of
the differences among two or more conditions was determined by Student's *t* test or
one-way analysis of variance (ANOVA) followed by *post hoc* Dunnett's test,
respectively.

33

35	Supplemental	Table	1. Affinity c	of LDT	derivatives	for native ra	t α_2 -adrenoceptor	s and
----	--------------	-------	---------------	--------	-------------	---------------	----------------------------	-------

36 muscarinic receptors.

	a2-adrenoceptors		muscarinic receptors	
Compound (p)	$log \ IC_{50} \pm SD \ (M)$	Ki	$\log IC + SD(M)$	Ki
Compound (ff)		(µM)	$\log 1C_{50} \pm SD (M)$	(µM)
LDT3 (4)	-5.97 ± 0.18	0.93	-4.26 ± 0.14	56.7
LDT5 (3)	$-6.53 \pm 0.09^{**}$	0.24	$-3.98 \pm 0.10^{*}$	108
LDT8 (4)	-6.22 ± 0.24	0.55	-4.48 ± 0.14	34
LDT66 ^a (3)	$\textbf{-5.92}\pm0.13^{b}$	0.81	-3.80 ± 0.14	52
yohimbine (2)	-6.76 ± 0.07	0.12		
pirenzepine (2)			-7.16 ± 0.04	0.02

37 IC_{50} values (expressed as mean \pm SD) were calculated by nonlinear regression of data from binding competition assays using radiolabelled antagonists of α_2 -adrenoceptors 38 ([³H]RX-821002) and muscarinic receptors ([³H]-QNB). Yohimbine and pirenzepine 39 were used as positive controls for α_2 -adrenoceptor and muscarinic receptor antagonism, 40 41 respectively. K_i values were calculated using the Cheng-Prusoff equation (Cheng and Prusoff, 1973), considering K_d values of 2.05 nM for [³H]RX-821002 (Chagas-Silva et 42 al., 2014) and 0.05 nM for [³H]-QNB (Luthin and Wolfe, 1984). Experiments were 43 performed in triplicates. ^a from Chagas-Silva et al., 2014 with permission; ^b n = 5. 44

45 $F_{3,12} = 9.347$, P = 0.0018 for α_2 -adrenoceptors. ** P < 0.01vs. LDT3 (one way ANOVA 46 followed by *post hoc* Dunnett's test)

47 $F_{3,10} = 17.56$, P = 0.0003 for muscarinic receptors. *P < 0.05 vs. LDT3 and LDT8 (one way 48 ANOVA followed by *post hoc* Dunnett's test)

	5-HT _{1A}	5-HT _{2A}	Selectivity for 5-HT _{1A} (5-HT _{2A} /5-HT _{1A} <i>K</i> _i ratio)
Compound	$K_{i}(M)(n)$	$K_{i}(\mathbf{M})(\mathbf{n})$	_
-	$\left[\log IC_{50} \pm SD\left(M\right)\right]$	$[\log IC_{50} \pm SD (M)]$	
LDT3	1.12 x 10⁻⁹ (4)	7.08 x 10⁻⁸ (3)	63
	$[-8.56 \pm 0.07]^{***}$	$[-7.15 \pm 0.38]^{\#}$	
LDT5	2.51 x 10⁻⁹ (4)	3.89 x 10⁻⁷ (3)	155
	$[-8.21 \pm 0.05]^{***}$	$[-6.41 \pm 0.03]^{\#}$	
LDT8	8.85 x 10⁻¹² (2)	3.89 x 10⁻⁷ (3)	43,949
	$[-10.66 \pm 0.03]$	$[-6.41 \pm 1.21]^{**}$	
LDT66 ^a	5.9 x 10⁻⁹ (4)	1.78 x 10⁻⁶ (3)	300
	$\left[\text{-}7.93 \pm 0.40\right]^{***}$	${[-5.57\pm0.28]}^{\#}$	

50 Supplemental Table 2. Affinity and selectivity of LDTs towards native rat 5-HT

51 receptors.

52 Data were obtained using binding competition assays with the radioligands [3 H]-8-OH-53 DPAT (5-HT_{1A} receptor) and [3 H]-ketanserin (5-HT_{2A} receptor). K_{i} values were 54 calculated using the Cheng-Prusoff equation (Cheng and Prusoff, 1973). Experiments 55 were performed in triplicates. ^a from Chagas-Silva et al., 2014 with permission.

56 $F_{3,10} = 72.18$, P < 0.0001 for 5-HT_{1A} receptors. *** P < 0.001 compared to LDT 8 (one-

57 way ANOVA followed by a *post hoc* Dunnett's test). ** P < 0.01, # P < 0.001 for 5-

58 HT_{2A} versus 5-HT_{1A} receptors (Student's t test).

59

76

Supplemental Figure 3. Inhibition of human hyperplastic prostate cell growth by LDT3and LDT5.

In these cells, proliferation (estimated by the MTT assay) induced by phenylephrine (A, PHE) or 5-HT (B) is mainly due to activation of α_{1D} -adrenoceptors and 5-HT_{1A} receptors, respectively. BMY 7378 and *p*-MPPF (α_{1D} -adrenoceptors and 5-HT_{1A} antagonists, respectively) were used as controls. Data are expressed as mean ± SD of 5 independent experiments performed in quintuplicates using three different cultures (see Methods).

85 $F_{7,32} = 7.558$, P < 0.0001 for α_{1D} -adrenoceptor. $F_{7,32} = 5.221$, P = 0.0005 for 5-HT_{1A} 86 receptor. *** P < 0.001 vs. agonist alone. One-way analysis of variance (ANOVA) 87 followed by the *post hoc* Dunnett's test.

Supplemental Figure 4. Inhibition of the growth of human DU-145 prostate cancer cells by LDT3, LDT5 and LDT8. Growth was estimated by MTT assay, and BMY 7378 (50 nM) and *p*-MPPF (50 nM) were used as selective antagonists of α_{1D} adrenoceptors and 5-HT_{1A} receptors, respectively. In these cells, proliferation induced by phenylephrine (A, PHE) or 5-HT (B) is mainly due to activation of α_{1D} adrenoceptors and 5-HT_{1A} receptors, respectively. Data are expressed as mean ± SD of 3-4 independent experiments performed in triplicates.

109 $F_{9,61} = 8.002$, P < 0.0001 for α_{1D} -adrenoceptor. $F_{9,61} = 5.394$, P < 0.0001 for 5-HT_{1A} 110 receptor. *P < 0.05, **P < 0.01 and ***P < 0.001 compared to the agonists (one-way

111 ANOVA followed by the *post hoc* Dunnett's test).

157 **References**

- Luthin GR, Wolfe BB (1984) [3H]Pirenzepine and [3H]quinuclidinyl benzilate binding
- to brain muscarinic cholinergic receptors. Differences in measured receptor density are
- not explained by differences in receptor isomerization. *Mol Pharmacol* **26**:164–169