PT - JOURNAL ARTICLE AU - Rothman, Richard B. AU - Ananthan, Subramaniam AU - Partilla, John S. AU - Saini, Surendra K. AU - Moukha-Chafiq, Omar AU - Pathak, Vibha AU - Baumann, Michael H. TI - Studies of the Biogenic Amine Transporters 15. Identification of Novel Allosteric Dopamine Transporter Ligands with Nanomolar Potency AID - 10.1124/jpet.114.222299 DP - 2015 Jun 01 TA - Journal of Pharmacology and Experimental Therapeutics PG - 529--538 VI - 353 IP - 3 4099 - http://jpet.aspetjournals.org/content/353/3/529.short 4100 - http://jpet.aspetjournals.org/content/353/3/529.full SO - J Pharmacol Exp Ther2015 Jun 01; 353 AB - Novel allosteric modulators of the dopamine transporter (DAT) have been identified. We have shown previously that SRI-9804 [N-(diphenylmethyl)-2-phenyl-4-quinazolinamine], SRI-20040 [N-(2,2-diphenylethyl)-2-phenyl-4-quinazolinamine], and SRI-20041 [N-(3,3-diphenylpropyl)-2-phenyl-4-quinazolinamine] partially inhibit [125I]RTI-55 ([125I]3β-(4′-iodophenyl)tropan-2β-carboxylic acid methyl ester) binding and [3H]dopamine ([3H]DA) uptake, slow the dissociation rate of [125I]RTI-55 from the DAT, and allosterically modulate d-amphetamine–induced, DAT-mediated DA release. We synthesized and evaluated the activity of >500 analogs of these ligands and report here on 36 selected compounds. Using synaptosomes prepared from rat caudate, we conducted [3H]DA uptake inhibition assays, DAT binding assays with [3H]WIN35428 ([3H]2β-carbomethoxy-3β-(4-fluorophenyl)tropane), and DAT-mediated release assays with either [3H]MPP+ ([3H]1-methyl-4-phenylpyridinium) or [3H]DA. We observed three groups of [3H]DA uptake inhibitors: 1) full-efficacy agents with a one-site fit, 2) full-efficacy agents with a two-site fit, and 3) partial-efficacy agents with a one-site fit—the focus of further studies. These agents partially inhibited DA, serotonin, and norepinephrine uptake, yet were much less potent at inhibiting [3H]WIN35428 binding to the DAT. For example, SRI-29574 [N-(2,2-diphenylethyl)-2-(imidazo[1,2-a]pyridin-6-yl)quinazolin-4-amine] partially inhibited DAT uptake, with an IC50 = 2.3 ± 0.4 nM, without affecting binding to the DAT. These agents did not alter DAT-mediated release of [3H]MPP+ in the absence or presence of 100 nM d-amphetamine. SRI-29574 had no significant effect on the d-amphetamine EC50 or Emax value for DAT-mediated release of [3H]MPP+. These studies demonstrate the existence of potent DAT ligands that partially block [3H]DA uptake, without affecting DAT binding or d-amphetamine–induced [3H]MPP+ release. These compounds may prove to be useful probes of biogenic amine transporter function as well as novel therapeutics.