PT - JOURNAL ARTICLE AU - Eduardo C. Alexandre AU - Luiz O. Leiria AU - Fábio H. Silva AU - Camila B. Mendes-Silvério AU - Fabiano B. Calmasini AU - Ana Paula C. Davel AU - Fabíola Z. Mónica AU - Gilberto De Nucci AU - Edson Antunes TI - Soluble Guanylyl Cyclase (sGC) Degradation and Impairment of Nitric Oxide-Mediated Responses in Urethra from Obese Mice: Reversal by the sGC Activator BAY 60-2770 AID - 10.1124/jpet.113.211029 DP - 2014 Apr 01 TA - Journal of Pharmacology and Experimental Therapeutics PG - 2--9 VI - 349 IP - 1 4099 - http://jpet.aspetjournals.org/content/349/1/2.short 4100 - http://jpet.aspetjournals.org/content/349/1/2.full SO - J Pharmacol Exp Ther2014 Apr 01; 349 AB - Obesity has emerged as a major contributing risk factor for overactive bladder (OAB), but no study examined urethral smooth muscle (USM) dysfunction as a predisposing factor to obesity-induced OAB. This study investigated the USM relaxant machinery in obese mice and whether soluble guanylyl cyclase (sGC) activation with BAY 60-2770 [acid 4-({(4-carboxybutyl) [2-(5-fluoro-2-{[4-(trifluoromethyl) biphenyl-4-yl] methoxy} phenyl) ethyl] amino} methyl) benzoic] rescues the urethral reactivity through improvement of sGC-cGMP (cyclic guanosine monophosphate) signaling. Male C57BL/6 mice were fed for 12 weeks with a high-fat diet to induce obesity. Separate groups of animals were treated with BAY 60-2770 (1 mg/kg per day for 2 weeks). Functional assays and measurements of cGMP, reactive-oxygen species (ROS), and sGC protein expression in USM were determined. USM relaxations induced by NO (acidified sodium nitrite), NO donors (S-nitrosoglutathione and glyceryl trinitrate), and BAY 41-2272 [5-cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]-pyrimidin-4-ylamine] (sGC stimulator) were markedly reduced in obese compared with lean mice. In contrast, USM relaxations induced by BAY 60-2770 (sGC activator) were 43% greater in obese mice (P < 0.05), which was accompanied by increases in cGMP levels. Oxidation of sGC with ODQ [1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one] (10 μM) potentiated BAY 60-2770-induced USM responses in the lean group. Long-term oral BAY 60-2770 administration fully prevented the impairment of USM relaxations in obese mice. Reactive-oxygen species (ROS) production was enhanced, but protein expression of β1 second guanylate cyclase subunit was reduced in USM from obese mice, both of which were restored by BAY 60-2770 treatment. In conclusion, impaired USM relaxation in obese mice is associated with ROS generation and down-regulation of sGC-cGMP signaling. Prevention of sGC degradation by BAY 60-2770 ameliorates the impairment of urethral relaxations in obese mice.