RT Journal Article SR Electronic T1 Low-Dose Methotrexate Results in the Selective Accumulation of Aminoimidazole Carboxamide Ribotide in an Erythroblastoid Cell Line JF Journal of Pharmacology and Experimental Therapeutics JO J Pharmacol Exp Ther FD American Society for Pharmacology and Experimental Therapeutics SP 154 OP 163 DO 10.1124/jpet.113.206672 VO 347 IS 1 A1 Ryan S. Funk A1 Leon van Haandel A1 Mara L. Becker A1 J. Steven Leeder YR 2013 UL http://jpet.aspetjournals.org/content/347/1/154.abstract AB Therapeutic and toxic response to low-dose methotrexate (MTX) in the treatment of autoimmune disease continues to be highly variable, resulting in a critical need to identify predictive biomarkers of response. Biomarker development has been hampered by an incomplete understanding of the molecular pharmacology of low-dose MTX. To address this issue, accumulation of the substrates for aminoimidazole carboxamide ribonucleotide transformylase (AICART) and thymidylate synthase (TS) was measured as markers of pharmacological activity of MTX in an erythroblastoid cell line. A 115-fold increase in the AICART substrate and anti-inflammatory mediator, 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranosyl 5′-monophosphate (ZMP), was observed following exposure to 10 nM MTX but subsequently decreased with increasing MTX concentrations, declining to baseline levels with 1000 nM MTX. In contrast, the TS substrate, 2′-deoxyuridine 5′-monophosphate disodium salt (dUMP), displayed concentration-dependent accumulation, increasing 29-, 342-, and 471-fold over baseline with 10, 100, and 1000 nM MTX, respectively. Cellular levels of dUMP correlated with levels of the parent drug (MTX-PG1; r = 0.66, P < 0.001) and its polyglutamates (MTX-PG2–6) (r = 0.81, P < 0.001), whereas cellular levels of ZMP were only moderately correlated with MTX-PG1 (r = 0.34, P < 0.01). In contrast, accumulation of ZMP at 10 nM MTX was associated with a 2.9-fold increase in the AICART inhibitor dihydrofolate (DHF), represented primarily by long-chain DHF polyglutamates. Selectivity, defined as the ratio of ZMP to dUMP, was maximal following exposure to 6 nM MTX. Characterizing the range of MTX concentrations that selectively promote ZMP accumulation while preserving pyrimidine biosynthesis may lead to optimization of low-dose MTX therapy.