RT Journal Article SR Electronic T1 Synthetic Farnesoid X Receptor Agonists Induce High-Density Lipoprotein-Mediated Transhepatic Cholesterol Efflux in Mice and Monkeys and Prevent Atherosclerosis in Cholesteryl Ester Transfer Protein Transgenic Low-Density Lipoprotein Receptor (−/−) Mice JF Journal of Pharmacology and Experimental Therapeutics JO J Pharmacol Exp Ther FD American Society for Pharmacology and Experimental Therapeutics SP 556 OP 567 DO 10.1124/jpet.112.196519 VO 343 IS 3 A1 Hambruch, Eva A1 Miyazaki-Anzai, Shinobu A1 Hahn, Ulrike A1 Matysik, Silke A1 Boettcher, Alfred A1 Perović-Ottstadt, Sanja A1 Schlüter, Thomas A1 Kinzel, Olaf A1 Krol, Helen Desiree A1 Deuschle, Ulrich A1 Burnet, Michael A1 Levi, Moshe A1 Schmitz, Gerd A1 Miyazaki, Makoto A1 Kremoser, Claus YR 2012 UL http://jpet.aspetjournals.org/content/343/3/556.abstract AB Farnesoid X receptor (FXR), a bile acid-activated nuclear hormone receptor, plays an important role in the regulation of cholesterol and more specifically high-density lipoprotein (HDL) homeostasis. Activation of FXR is reported to lead to both pro- and anti-atherosclerotic effects. In the present study we analyzed the impact of different FXR agonists on cholesterol homeostasis, plasma lipoprotein profiles, and transhepatic cholesterol efflux in C57BL/6J mice and cynomolgus monkeys and atherosclerosis development in cholesteryl ester transfer protein transgenic (CETPtg) low-density lipoprotein receptor (LDLR) (−/−) mice. In C57BL/6J mice on a high-fat diet the synthetic FXR agonists isopropyl 3-(3,4-difluorobenzoyl)-1,1-dimethyl-1,2,3,6-tetrahydroazepino[4,5-b]indole-5-carboxylate (FXR-450) and 4-[2-[2-chloro-4-[[5-cyclopropyl-3-(2,6-dichlorophenyl)-4-isoxazolyl]methoxy]phenyl]cyclopropyl]benzoic acid (PX20606) demonstrated potent plasma cholesterol-lowering activity that affected all lipoprotein species, whereas 3-[2-[2-chloro-4-[[3-(2,6-dichlorophenyl)-5-(1-methylethyl)-4-isoxazolyl]methoxy]phenyl]ethenyl]benzoic acid (GW4064) and 6-ethyl chenodeoxycholic acid (6-ECDCA) showed only limited effects. In FXR wild-type mice, but not FXR(−/−) mice, the more efficacious FXR agonists increased fecal cholesterol excretion and reduced intestinal cholesterol (re)uptake. In CETPtg-LDLR(−/−) mice PX20606 potently lowered total cholesterol and, despite the observed HDL cholesterol (HDLc) reduction, caused a highly significant decrease in atherosclerotic plaque size. In normolipidemic cynomolgus monkeys PX20606 and 6-ECDCA both reduced total cholesterol, and PX20606 specifically lowered HDL2c but not HDL3c or apolipoprotein A1. That pharmacological FXR activation specifically affects this cholesterol-rich HDL2 subclass is a new and highly interesting finding and sheds new light on FXR-dependent HDLc lowering, which has been perceived as a major limitation for the clinical development of FXR agonists.