RT Journal Article SR Electronic T1 Bioenergetic Effects of Mitochondrial-Targeted Coenzyme Q Analogs in Endothelial Cells JF Journal of Pharmacology and Experimental Therapeutics JO J Pharmacol Exp Ther FD American Society for Pharmacology and Experimental Therapeutics SP 709 OP 719 DO 10.1124/jpet.112.195586 VO 342 IS 3 A1 Brian D. Fink A1 Judith A. Herlein A1 Mark A. Yorek A1 Amanda M. Fenner A1 Robert J. Kerns A1 William I. Sivitz YR 2012 UL http://jpet.aspetjournals.org/content/342/3/709.abstract AB Mitochondrial-targeted analogs of coenzyme Q (CoQ) are under development to reduce oxidative damage induced by a variety of disease states. However, there is a need to understand the bioenergetic effects of these agents and whether or not these effects are related to redox properties, including their known pro-oxidant effects. We examined the bioenergetic effects of two mitochondrial-targeted CoQ analogs in their quinol forms, mitoquinol (MitoQ) and plastoquinonyl-decyl-triphenylphosphonium (SkQ1), in bovine aortic endothelial cells. We used an extracellular oxygen and proton flux analyzer to assess mitochondrial action at the intact-cell level. Both agents, in dose-dependent fashion, reduced the oxygen consumption rate (OCR) directed at ATP turnover (OCRATP) (IC50 values of 189 ± 13 nM for MitoQ and 181 ± 7 for SKQ1; difference not significant) while not affecting or mildly increasing basal oxygen consumption. Both compounds increased extracellular acidification in the basal state consistent with enhanced glycolysis. Both compounds enhanced mitochondrial superoxide production assessed by using mitochondrial-targeted dihydroethidium, and both increased H2O2 production from mitochondria of cells treated before isolation of the organelles. The manganese superoxide dismutase mimetic manganese(III) tetrakis(1-methyl-4-pyridyl)porphyrin did not alter or actually enhanced the actions of the targeted CoQ analogs to reduce OCRATP. In contrast, N-acetylcysteine mitigated this effect of MitoQ and SkQ1. In summary, our data demonstrate the important bioenergetic effects of targeted CoQ analogs. Moreover, these effects are mediated, at least in part, through superoxide production but depend on conversion to H2O2. These bioenergetic and redox actions need to be considered as these compounds are developed for therapeutic purposes.