PT - JOURNAL ARTICLE AU - A. Elizabeth Linder AU - Geri L. Gaskell AU - Theodora Szasz AU - Janice M. Thompson AU - Stephanie W. Watts TI - Serotonin Receptors in Rat Jugular Vein: Presence and Involvement in the Contraction AID - 10.1124/jpet.109.163014 DP - 2010 Jul 01 TA - Journal of Pharmacology and Experimental Therapeutics PG - 116--123 VI - 334 IP - 1 4099 - http://jpet.aspetjournals.org/content/334/1/116.short 4100 - http://jpet.aspetjournals.org/content/334/1/116.full SO - J Pharmacol Exp Ther2010 Jul 01; 334 AB - Serotonin (5-hydroxytryptamine; 5-HT) is released during platelet aggregation, a phenomenon commonly observed in blood clot formation and venous diseases. Once released, 5-HT can interact with its receptors in the peripheral vasculature to modify vascular tone. The goal of this study was to perform a detailed pharmacological characterization of the 5-HT receptors involved in the contractile response of the rat jugular vein (RJV) using recently developed drugs with greater selectivity toward 5-HT receptor subtypes. We hypothesized that, as for other blood vessels, the 5-HT1B/1D and 5-HT2B receptor subtypes mediate contraction in RJV alongside the 5-HT2A receptor subtype. Endothelium-intact RJV rings were set up in an isolated organ bath for isometric tension recordings, and contractile concentration-effect curves were obtained for 13 distinct serotonergic receptor agonists. Surprisingly, the 5-HT1A and the mixed 5-HT1A/1B receptor agonists (±)-2-dipropyl-amino-8-hydroxyl-1,2,3,4-tetrahydronapthalene (8-OH-DPAT) and 5-methoxy-3 (1,2,3,6-tetrahydropyridin-4-yl) (1H indole) (RU24969) caused contractions that were antagonized by the 5-HT1A receptor antagonist [O-methyl-3H]-N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridinyl)cyclohexanecarboxamide (WAY100135). The contractile curve to 5-HT was shifted to the right by WAY100135, 3-[2-[4-(4-fluoro benzoyl)-piperidin-1-yl]ethyl]-1H-quinazoline-2,4-dione (ketanserin; 5-HT2A/C receptor antagonist), and 1-(2-chloro-3,4-dimethoxybenzyl)-6-methyl-1,2,3,4-tetrahydro-9H-pyrido[3,4-b]indole hydrochloride (LY266097; 5-HT2B receptor antagonist). Ketanserin also caused rightward shifts of the contractile curves to 8-OH-DPAT, RU24969, and the 5-HT2B receptor agonist (α-methyl-5-(2-thienylmethoxy)-1H-indole-3-ethanamine) (BW723C86). Agonists for 5-HT1B/1D/1F, 5-HT3, 5-HT6, and 5-HT7 receptors were inactive. In real-time polymerase chain reaction experiments that have never been performed in this tissue previously, we observed mRNA expression for the 5-HT2A, 5-HT2B, and 5-HT7 receptors, whereas no significant mRNA expression was found for 5-HT1A, 5-HT1B, and 5-HT1D receptors. These results support the 5-HT2A receptor as the main subtype targeted by 5-HT to contract the RJV. Copyright © 2010 by The American Society for Pharmacology and Experimental Therapeutics