RT Journal Article SR Electronic T1 Proton Acts as a Neurotransmitter for Nicotine-Induced Adrenergic and Calcitonin Gene-Related Peptide-Containing Nerve-Mediated Vasodilation in the Rat Mesenteric Artery JF Journal of Pharmacology and Experimental Therapeutics JO J Pharmacol Exp Ther FD American Society for Pharmacology and Experimental Therapeutics SP 745 OP 755 DO 10.1124/jpet.108.149435 VO 330 IS 3 A1 Kawasaki, Hiromu A1 Eguchi, Shinji A1 Miyashita, Satoko A1 Chan, Shu A1 Hirai, Kazuhiro A1 Hobara, Narumi A1 Yokomizo, Ayako A1 Fujiwara, Hidetoshi A1 Zamami, Yoshito A1 Koyama, Toshihiro A1 Jin, Xin A1 Kitamura, Yoshihisa YR 2009 UL http://jpet.aspetjournals.org/content/330/3/745.abstract AB Nicotine stimulates presynaptic nicotinic acetylcholine receptors in perivascular adrenergic nerves and releases unknown transmitter(s) that activate transient receptor potential vanilloid-1 (TRPV1) located on calcitonin gene-related peptide (CGRP)-containing (CGRPergic) nerves, resulting in vasodilation. The present study investigated a potential transmitter transmitting between perivascular adrenergic nerves and CGRPergic nerves. Rat mesenteric vascular beds without endothelium were contracted by perfusion with Krebs' solution containing methoxamine, and the perfusion pressure and pH levels of the perfusate were measured. Nicotine perfusion for 1 min induced concentration-dependent vasodilation and lowered pH levels, which were abolished by cold-storage denervation of preparations, guanethidine (adrenergic neuron blocker), and mecamylamine (nicotinic α3β4-acetylcholine receptor antagonist). Capsazepine (TRPV1 antagonist) blunted nicotine-induced vasodilation, but had no effect on the reduction of pH. Injection of hydrochloric acid (HCl) and perfusion of Krebs' solution at low pH (6.0–7.2) induced vasodilation. HCl-induced vasodilation was inhibited by cold-storage denervation, capsazepine, capsaicin (CGRP depletor), and CGRP(8–37) (CGRP receptor antagonist). Perfusion of adrenergic transmitter metabolites (normetanephrine and 3-methoxydopamine), but not of other metabolites, induced vasodilation, which was not inhibited by capsaicin treatment. Immunohistochemical staining of mesenteric arteries showed dense innervation of CGRP- and TRPV1-immunopositive nerves, with both immunostainings appearing in the same neuron. Mesenteric arteries were densely innervated by neuropeptide Y-immunopositive nerves, which coalesced with CGRP-immunopositive nerves. Scanning and immunoscanning electron microscopic images showed coalescence sites of different perivascular fibers before they intruded into smooth muscles. These results indicate that nicotine initially stimulates adrenergic nerves via nicotinic α3β4-receptors to release protons and thereby induces CGRPergic nerve-mediated vasodilation via TRPV1. The American Society for Pharmacology and Experimental Therapeutics