PT - JOURNAL ARTICLE AU - Valerie Croons AU - Wim Martinet AU - Arnold G. Herman AU - Jean-Pierre Timmermans AU - Guido R. Y. De Meyer TI - The Protein Synthesis Inhibitor Anisomycin Induces Macrophage Apoptosis in Rabbit Atherosclerotic Plaques through p38 Mitogen-Activated Protein Kinase AID - 10.1124/jpet.108.149948 DP - 2009 Jun 01 TA - Journal of Pharmacology and Experimental Therapeutics PG - 856--864 VI - 329 IP - 3 4099 - http://jpet.aspetjournals.org/content/329/3/856.short 4100 - http://jpet.aspetjournals.org/content/329/3/856.full SO - J Pharmacol Exp Ther2009 Jun 01; 329 AB - Because macrophages play a major role in atherosclerotic plaque destabilization, selective removal of macrophages represents a promising approach to stabilize plaques. We showed recently that the protein synthesis inhibitor cycloheximide, in contrast to puromycin, selectively depleted macrophages in rabbit atherosclerotic plaques without affecting smooth muscle cells (SMCs). The mechanism of action of these two translation inhibitors is dissimilar and could account for the differential effects on SMC viability. It is not known whether selective depletion of macrophages is confined to cycloheximide or whether it can also be achieved with translation inhibitors that have a similar mechanism of action. Therefore, in the present study, we investigated the effect of anisomycin, a translation inhibitor with a mechanism of action similar to cycloheximide, on macrophage and SMC viability. In vitro, anisomycin induced apoptosis of macrophages in a concentration-dependent manner, whereas SMCs were only affected at higher concentrations. In vivo, anisomycin selectively decreased the macrophage content of rabbit atherosclerotic plaques through apoptosis. The p38 mitogen-activated protein kinase (MAPK) inhibitor SB202190 [4-(4-fluorophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)-1H-imidazole] prevented anisomycin-induced macrophage death, without affecting SMC viability. SB202190 decreased anisomycin-induced p38 MAPK phosphorylation, did not alter c-Jun NH2-terminal kinase (JNK) phosphorylation, and increased extracellular signal-regulated kinase (ERK) 1/2 phosphorylation. The latter effect was abolished by the mitogen-activated protein kinase kinase 1/2 inhibitor U0126 [1,4-diamino-2,3-dicyano-1,4-bis(2-aminophynyltio)butadiene ethanolate], although the prevention of anisomycin-induced macrophage death by SB202190 remained unchanged. The JNK phosphorylation inhibitor SP600125 did not affect anisomycin-induced macrophage or SMC death. In conclusion, anisomycin selectively decreased the macrophage content in rabbit atherosclerotic plaques, indicating that this effect is not confined to cycloheximide. p38 MAPK, but not ERK1/2 or JNK, plays a major role in anisomycin-induced macrophage death. The American Society for Pharmacology and Experimental Therapeutics