PT - JOURNAL ARTICLE AU - Stéphanie Dal-Ros AU - Christian Bronner AU - Christa Schott AU - Modou O. Kane AU - Marta Chataigneau AU - Valerie B. Schini-Kerth AU - Thierry Chataigneau TI - Angiotensin II-Induced Hypertension Is Associated with a Selective Inhibition of Endothelium-Derived Hyperpolarizing Factor-Mediated Responses in the Rat Mesenteric Artery AID - 10.1124/jpet.108.145326 DP - 2009 Feb 01 TA - Journal of Pharmacology and Experimental Therapeutics PG - 478--486 VI - 328 IP - 2 4099 - http://jpet.aspetjournals.org/content/328/2/478.short 4100 - http://jpet.aspetjournals.org/content/328/2/478.full SO - J Pharmacol Exp Ther2009 Feb 01; 328 AB - Hypertension has been shown to be associated with impaired endothelium-derived hyperpolarizing factor (EDHF)-mediated arterial relaxation and hyperpolarization. Treatments of hypertensive rats with inhibitors of the renin-angiotensin system have been shown to restore both EDHF-mediated responses and the expression of connexins involved in the intercellular transfer of the hyperpolarization in mesenteric arteries. The present study was designed to determine whether chronic treatment of rats with angiotensin II impairs EDHF-mediated responses and the expression of connexins in the mesenteric arterial wall. Male Wistar rats were treated with angiotensin II (0.4 mg/kg/day) for 21 days using osmotic minipumps. Arterial pressure was measured by tail-cuff plethysmography. Contractile responses and membrane potential were measured in isolated mesenteric arteries. The expression of the three connexins (Cxs), Cx37, Cx40, and Cx43, was quantified in segments of mesenteric arteries by immunohistochemistry and quantitative real-time reverse transcriptase-polymerase chain reaction. Angiotensin II administration increased the mean systolic blood pressure. EDHF-mediated relaxation and hyperpolarization to acetylcholine and red wine polyphenols were significantly impaired in mesenteric arteries from angiotensin II-treated rats in comparison with control animals, whereas nitric oxide-mediated relaxation was unaltered. The expression of connexins Cx37, Cx40, and Cx43 was significantly decreased in the mesenteric artery from angiotensin II-treated rats. These findings indicate that angiotensin II-induced hypertension is associated with a selective impairment of EDHF-mediated relaxation and hyperpolarization in the rat mesenteric artery. The inhibition of EDHF-mediated responses is due, at least in part, to a decreased expression of connexins Cx37, Cx40, and Cx43 in the arterial wall. The American Society for Pharmacology and Experimental Therapeutics