TY - JOUR T1 - Effects of Analgesic or Antidepressant Drugs on Pain- or Stress-Evoked Hippocampal and Spinal Neurokinin-1 Receptor and Brain-Derived Neurotrophic Factor Gene Expression in the Rat JF - Journal of Pharmacology and Experimental Therapeutics JO - J Pharmacol Exp Ther SP - 1235 LP - 1243 DO - 10.1124/jpet.106.109470 VL - 319 IS - 3 AU - Vanja Duric AU - Kenneth E. McCarson Y1 - 2006/12/01 UR - http://jpet.aspetjournals.org/content/319/3/1235.abstract N2 - Clinical studies show that people suffering from chronic pain are often also burdened by depression. Antidepressants are used to treat some types of chronic pain; however, little is known about their mechanisms of action. This study addressed the effects of a nonsteroidal anti-inflammatory drug and a tricyclic antidepressant drug on pain- and stress-evoked gene expression in the rat spinal cord dorsal horn and hippocampus. Rats were pretreated with either indomethacin or imipramine and then challenged with either intraplantar complete Freund's adjuvant or a bout of immobilization stress. Results showed that indomethacin significantly reduced nociception-related peripheral edema, hyperalgesia, and reversed the pain-evoked up-regulation of neurokinin (NK)-1 receptor and brain-derived neurotrophic factor (BDNF) gene expression in the spinal cord to levels not statistically different from controls. However, indomethacin did not protect against significant pain-induced down-regulation of these genes in the hippocampus by approximately 50%, suggesting that although analgesic drug treatment reduces nociceptive sensory activation in the spinal cord, it is insufficient to prevent the impact of pain on the hippocampus. Conversely, although imipramine did not provide significant behavioral analgesia, it significantly blocked both pain- and stress-evoked alterations in hippocampal and spinal NK-1 and BDNF gene expression. Thus, these results show that application of either analgesic or antidepressant drugs alone does not fully protect against both the behavioral and molecular effects of persistent pain on both “sensory” and “affective” processing within the central nervous system. ER -