TY - JOUR T1 - Blockade of Angiogenesis by Small Molecule Antagonists to Protease-Activated Receptor-1: Association with Endothelial Cell Growth Suppression and Induction of Apoptosis JF - Journal of Pharmacology and Experimental Therapeutics JO - J Pharmacol Exp Ther SP - 246 LP - 254 DO - 10.1124/jpet.105.099069 VL - 318 IS - 1 AU - Panagiota Zania AU - Sosanna Kritikou AU - Christodoulos S. Flordellis AU - Michael E. Maragoudakis AU - Nikos E. Tsopanoglou Y1 - 2006/07/01 UR - http://jpet.aspetjournals.org/content/318/1/246.abstract N2 - Many studies support the notion that protease-activated receptor (PAR)-1 plays a pivotal role in angiogenesis. However, direct evidence and understanding the molecular mechanisms involved were limited because PAR-1-specific antagonists have been developed only recently. In the present study, we evaluated the effects of two well characterized PAR-1 antagonists, SCH79797 ((N-3-cyclopropyl-7-{[4-(1-methylethyl)phenyl]-methyl}-7H-pyrrolo[3,2-f]quinazoline-1,3-diamine)) and RWJ56110 [(αS)-N-[(1S)-3-amino-1-[[(phenylmethyl)amino]carbonyl]propyl]-α-[[[[[1-(2,6-dichlorophenyl)methyl]-3-(1-pyrrolidinylmethyl)-1H-indol-6-yl]amino]carbonyl]amino]-3,4-difluorobenzenepropanamide], in the angiogenic cascade. These antagonists suppressed both the basic angiogenesis and that stimulated by thrombin in the chick chorioallantoic membrane model in vivo. PAR-1 antagonists also abrogated tube formation in the in vitro Matrigel system. These inhibitory effects were dose-dependent and well correlated with the inhibitory effects of SCH79797 and RWJ56110 on primary endothelial cell proliferation and on the initiation of apoptosis. PAR-1 blockage resulted in inhibition of endothelial cell growth by increasing the sub-G0/G1 fraction and reducing the percentage of cells in the S phase. Consistent with this, PAR-1 antagonists reduced incorporation of [3H]thymidine in endothelial cells and blocked the phosphorylation of extracellular signal-regulated kinases in a fashion depending specifically on PAR-1 activation. Analysis by annexin V/propidium iodide staining and poly(ADP-ribose) polymerase cleavage revealed that PAR-1 blockage increased apoptotic cell death by a mechanism involving caspases. These results provide further evidence that PAR-1 is a key receptor that mediates angiogenesis and suggest PAR-1 as target for developing antiangiogenic agents with potential therapeutic application in cancer and other angiogenesis-related diseases. The American Society for Pharmacology and Experimental Therapeutics ER -