RT Journal Article SR Electronic T1 Inhibition of Adrenal Cortical Steroid Formation by Procaine Is Mediated by Reduction of the cAMP-Induced 3-Hydroxy-3-methylglutaryl-coenzyme A Reductase Messenger Ribonucleic Acid Levels JF Journal of Pharmacology and Experimental Therapeutics JO J Pharmacol Exp Ther FD American Society for Pharmacology and Experimental Therapeutics SP 1148 OP 1157 DO 10.1124/jpet.103.055178 VO 307 IS 3 A1 Xu, Jing A1 Lecanu, Laurent A1 Han, Zeqiu A1 Yao, Zhixing A1 Greeson, Janet A1 Papadopoulos, Vassilios YR 2003 UL http://jpet.aspetjournals.org/content/307/3/1148.abstract AB Elevated glucocorticoid levels are associated with many diseases, including age-related depression, hypertension, Alzheimer's disease, and acquired immunodeficiency syndrome. Cortisol-lowering agents could provide useful complementary therapy for these disorders. We examined the effect of procaine and procaine in a pharmaceutical formulation on adrenal cortical steroid formation. Procaine inhibited dibutyryl cyclic AMP (dbcAMP)-induced corticosteroid synthesis by murine Y1 and human H295R adrenal cells in a dose-dependent manner without affecting basal steroid formation. Treatment of rats with the procaine-based formulation reduced circulating corticosterone levels. This steroidogenesis-inhibiting activity of procaine was not observed in Leydig cells, suggesting that the effect was specific to adrenocortical cells. In search of the mechanism underlying this inhibitory effect on cAMP-induced corticosteroidogenesis, procaine was found to affect neither the cAMP-dependent protein kinase activity nor key proteins involved in cholesterol transport into mitochondria, cytochrome P450 side chain cleavage enzyme expression, and enzymatic activities associated with cholesterol metabolism to final steroid products. However, procaine reduced in a dose-dependent manner the 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA) activity and the dbcAMP-induced HMG-CoA reductase mRNA levels by affecting mRNA stability. These data suggest that the inhibitory effect of procaine on cAMP-induced corticosteroid formation is due to the reduced synthesis of cholesterol. This modulatory effect of procaine on HMG-CoA reductase mRNA expression was also seen in dbcAMP-stimulated Hepa1-6 mouse liver hepatoma cells. Taken together, these results suggest that procaine may provide a pharmacological means for the control of hormone-induced HMG-CoA reductase mRNA expression and hypercortisolemia. The American Society for Pharmacology and Experimental Therapeutics