PT - JOURNAL ARTICLE AU - Lalitha Madhavan AU - William J. Freed AU - Vellareddy Anantharam AU - Anumantha G. Kanthasamy TI - 5-Hydroxytryptamine 1A Receptor Activation Protects against<em>N-</em>Methyl-<span class="sc">d</span>-aspartate-Induced Apoptotic Cell Death in Striatal and Mesencephalic Cultures AID - 10.1124/jpet.102.044370 DP - 2003 Mar 01 TA - Journal of Pharmacology and Experimental Therapeutics PG - 913--923 VI - 304 IP - 3 4099 - http://jpet.aspetjournals.org/content/304/3/913.short 4100 - http://jpet.aspetjournals.org/content/304/3/913.full SO - J Pharmacol Exp Ther2003 Mar 01; 304 AB - Apoptosis and glutamate-mediated excitotoxicity may play a role in the pathogenesis of many neurodegenerative disorders, including Parkinson's disease (PD). In the present study, we investigated whether stimulation of the 5-hydroxytryptamine 1A (5-HT1A) receptor attenuates N-methyl-d-aspartate- (NMDA) and 1-methyl-4-phenylpyridinium (MPP+)-induced apoptotic cell death in cell culture models. A brief exposure (20 min) of M213-2O striatal cells to NMDA and glutamate produced a delayed increase in caspase-3 activity and DNA fragmentation in a dose- and time-dependent manner. NMDA-induced caspase-3 activity and DNA fragmentation were almost completely blocked by the 5-HT1A agonists 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) and (R)-5-fluoro-8 hydroxy-2-(dipropylamino)-tetralin (R-UH-301). Additionally, the protective effects of 8-OH-DPAT and R-UH-301 on NMDA-induced caspase-3 activation and apoptosis were reversed by pretreatment with the 5-HT1A antagonists N-[2-[4-(2-methoxyphenyl)-1-piperazinyl] ethyl]-N-(2-pyridinyl) cyclohexane carboxamide (WAY 100635) and S-UH-301, respectively. Similarly, dose- and time-dependent increases in caspase-3 activity and DNA fragmentation were observed in rat primary mesencephalic neurons after a brief exposure to NMDA and glutamate. Caspase-3 activation and DNA fragmentation in primary mesencephalic neurons were almost completely inhibited by 8-OH-DPAT. This neuroprotective effect of 8-OH-DPAT was reversed by WAY 100635. Additionally, 8-OH-DPAT blocked tyrosine hydroxylase (TH)-positive cell death after NMDA exposure and also almost completely attenuated the NMDA-induced Ca2+ influx in primary mesencephalic cultures. Furthermore, 8-OH-DPAT andR-UH-301 blocked apoptotic cell death in the primary mesencephalic neurons that were exposed to the Parkinsonian toxin MPP+. Together, these results suggest that 5-HT1A receptor stimulation may be a promising pharmacological approach in the development of neuroprotective agents for PD. U.S. Government