RT Journal Article SR Electronic T1 Modulation of Recombinant Small-Conductance Ca2+-Activated K+ Channels by the Muscle Relaxant Chlorzoxazone and Structurally Related Compounds JF Journal of Pharmacology and Experimental Therapeutics JO J Pharmacol Exp Ther FD American Society for Pharmacology and Experimental Therapeutics SP 683 OP 689 VO 296 IS 3 A1 Ying-Jun Cao A1 John C. Dreixler A1 Jeffrey D. Roizen A1 Michael T. Roberts A1 Khaled M. Houamed YR 2001 UL http://jpet.aspetjournals.org/content/296/3/683.abstract AB Using the patch clamp technique we investigated the effects of the centrally acting muscle relaxant chlorzoxazone and three structurally related compounds, 1-ethyl-2-benzimidazolinone (1-EBIO), zoxazolamine, and 1,3-dihydro-1-[2-hydroxy-5-(triflu oromethyl)phenyl]-5-(trifluoromethyl)-2H-benzimidazol-2-one (NS 1619) on recombinant rat brain SK2 channels (rSK2 channels) expressed in HEK293 mammalian cells. SK channels are small conductance K+ channels normally activated by a rise in intracellular Ca2+ concentration; they modulate the electrical excitability in neurons and neuroendocrine cells. When applied externally, chlorzoxazone, 1-EBIO, and zoxazolamine activated rSK2 channel currents in cells dialyzed with a nominally Ca2+-free intracellular solution. The activation was reversible, reproducible, and depended on the chemical structure and concentration. The order of potency was 1-EBIO > chlorzoxazone > zoxazolamine. Activation of rSK2 channels by chlorzoxazone, 1-EBIO, and zoxazolamine declined at higher drug concentrations. Zoxazolamine, when applied in combination with chlorzoxazone or 1-EBIO, partially inhibited the rSK2 channel current responses, suggesting a partial-agonist mode of action. 1-EBIO failed to activate rSK2 channel currents when applied to excised inside-out membrane patches exposed to a Ca2+-free intracellular solution. In contrast, 1-EBIO activated rSK2 currents in a concentration-dependent manner when coapplied to the patches with a solution containing 20 nM free Ca2+. NS 1619 did not activate rSK2 channel currents; it inhibited rSK2 channel currents activated by the other three test compounds or by high intracellular Ca2+. We conclude that chlorzoxazone and its derivatives act through a common mechanism to modulate rSK2 channels, and SK channel modulation in the brain may partly underlie the clinical effects of chlorzoxazone. The American Society for Pharmacology and Experimental Therapeutics