TY - JOUR T1 - Multisecond Oscillations in Firing Rate in the Globus Pallidus: Synergistic Modulation by D1 and D2 Dopamine Receptors JF - Journal of Pharmacology and Experimental Therapeutics JO - J Pharmacol Exp Ther SP - 1493 LP - 1501 VL - 290 IS - 3 AU - David N. Ruskin AU - Debra A. Bergstrom AU - Judith R. Walters Y1 - 1999/09/01 UR - http://jpet.aspetjournals.org/content/290/3/1493.abstract N2 - The firing rates of many basal ganglia neurons recorded in awake rats oscillate at seconds-to-minutes time scales, and the D1/D2 agonist apomorphine has been shown to robustly modulate these oscillations. The use of selective D1 and D2 antagonists suggested that both these receptor subfamilies are involved in apomorphine’s effects. In the present study, spectral analysis revealed that baseline multisecond oscillations were significantly periodic in 71% of globus pallidus neurons. Baseline oscillations had a wide range of periods within the analyzed range, with a population mean of 32 ± 2 s. Administration of the D1 agonist SKF 81297 (6-chloroPB) at 1.0 or 5.0 mg/kg significantly changed these oscillations, reducing means of spectral peak periods to 14 to 16 s (i.e., increasing oscillatory frequency). This effect was attenuated by D2 antagonist pretreatment. The D2 agonist quinpirole did not cause a significant population change in multisecond periodicities. The strongest effects on multisecond periodicities occurred after combined treatment with SKF 81297 and quinpirole. Low, ineffective doses of SKF 81297 and quinpirole, when combined, produced a significant increase in oscillatory frequency. Also, when quinpirole was administered after an already effective dose of SKF 81297, quinpirole shifted oscillations to an even faster range (typically to periods of <10 s). The dopaminergic control of multisecond periodicities in globus pallidus firing rate demonstrates D1/D2 receptor synergism, in that the effects of D1 agonists are potentiated by and partially dependent on D2 receptor activity. Modulation of multisecond oscillations in firing rate represents a novel means by which dopamine can influence globus pallidus physiology. The American Society for Pharmacology and Experimental Therapeutics ER -