TY - JOUR T1 - Spectroscopic Studies of Nitric Oxide (NO) Interactions with Cobalamins: Reaction of NO with Superoxocobalamin(III) Likely Accounts for Cobalamin Reversal of the Biological Effects of NO JF - Journal of Pharmacology and Experimental Therapeutics JO - J Pharmacol Exp Ther SP - 665 LP - 671 VL - 285 IS - 2 AU - Harriet Kruszyna AU - John S. Magyar AU - Lori G. Rochelle AU - Michael A. Russell AU - Roger P. Smith AU - Dean E. Wilcox Y1 - 1998/05/01 UR - http://jpet.aspetjournals.org/content/285/2/665.abstract N2 - Recent reports indicate that oxidized cobalamin, Cbl(III), can interfere with the biological effects of nitric oxide (NO) on vascular and visceral smooth muscle and in other systems. In attempting to elucidate the mechanism of these effects of Cbl(III), we reported that a Cbl(III)NO complex could be detected by electron paramagnetic resonance (EPR) spectroscopy, but not by ultraviolet/visible spectroscopy. Subsequently, others concluded that the alleged Cbl(III)NO complex is detectable by ultraviolet/visible, but not by EPR spectroscopy and provided ultraviolet/visible evidence for an alleged Cbl(II)NO complex. We report further investigation of the interaction of NO with Cbl, using both techniques, Fourier transform infrared (FTIR) spectroscopy and mass spectrometry. Our EPR results and the UV/VIS results of others appear to be experimental artifacts that can now, at least in part, be explained. Under conditions where FTIR measurements readily detect a N-O stretching frequency of NO bound to Fe(II), we do not detect a similar signal that can be ascribed to either Cbl(III)NO or Cbl(II)NO, indicating that neither Cbl(III) nor Cbl(II) form a stable complex with NO. Loss of the Cbl(II) EPR signal and mass spectral detection of N2O upon addition of NO to Cbl(II) solutions, demonstrates that Cbl(II), which is present in aerobic Cbl(III) solutions, reduces NO; however, this reaction does not appear to be fast enough to account for the observed biological effects in aerated media. Nitric oxide also reacts rapidly and irreversibly with the superoxo complex of Cbl(III), Cbl(III)O2−, which is always present in aerated solutions of Cbl(III). We believe that this latter reaction accounts for the observed inactivation of NO by Cbl(III) in biological systems. Because Cbl(III)O2− is spontaneously regenerated from Cbl(II) and O2 in aerated solutions, this may constitute a cyclic mechanism for the rapid elimination (oxidation) of NO. Thus, several physicochemical techniques fail to provide convincing evidence for the existence of stable Cbl(III)NO or Cbl(II)NO complexes but do provide evidence that Cbl species participate in redox reactions with NO under aerobic conditions, thereby inhibiting its physiological roles. The American Society for Pharmacology and Experimental Therapeutics ER -