RT Journal Article SR Electronic T1 The caffeine- and ryanodine-sensitive Ca++ store in porcine myometrial cells: its heterogeneity of all-or-none Ca++ release. JF Journal of Pharmacology and Experimental Therapeutics JO J Pharmacol Exp Ther FD American Society for Pharmacology and Experimental Therapeutics SP 1077 OP 1083 VO 275 IS 3 A1 Zhuge, R A1 Hsu, W H YR 1995 UL http://jpet.aspetjournals.org/content/275/3/1077.abstract AB The mechanisms for Ca++ release from caffeine-sensitive stores were investigated in freshly dispersed porcine myometrial cells utilizing the fura-2 method. Because the caffeine-sensitive Ca++ store has not been detected in myometrium of mammals, we first determined the existence of this type of store in porcine myometrial cells. The evidence includes: 1) caffeine (1-33 mM)-induced concentration-dependent increase in the intracellular Ca++ concentration ([Ca++]i) in both the presence and absence of extracellular Ca++ and 2) although ryanodine alone (< or = 10 microM) failed to change [Ca++]i, it inhibited the response to caffeine in a use-, concentration- and time-dependent manner. In the cell suspension study, the amount of Ca++ released by 10 mM caffeine was found to be inversely proportional to the amount released by preadministration of caffeine (1-33 mM). In the single cell study, about 30% of cells responded to only a certain concentration of caffeine and the others responded to caffeine gradually. Thapsigargin, an inhibitor of Ca(++)-adenosine triphosphatase in sarcoplasmic reticulum, failed to increase [Ca++]i. Pretreatment with thapsigargin inhibited the response to caffeine in a time- and concentration-dependent manner. These results suggest that in porcine myometrial cells: 1) the Ca++ released from the caffeine- and ryanodine-sensitive store is in an all-or-none manner through compartments of stores or the entire store of a cell and 2) the release process is regulated by luminal Ca++ content of the stores.