RT Journal Article SR Electronic T1 The kappa opioid receptor expressed on the mouse R1.1 thymoma cell line down-regulates without desensitizing during chronic opioid exposure. JF Journal of Pharmacology and Experimental Therapeutics JO J Pharmacol Exp Ther FD American Society for Pharmacology and Experimental Therapeutics SP 970 OP 976 VO 272 IS 3 A1 Joseph, D B A1 Bidlack, J M YR 1995 UL http://jpet.aspetjournals.org/content/272/3/970.abstract AB The R1.1 mouse thymoma cell line expresses a single class of kappa opioid receptors that is negatively coupled to adenylyl cyclase through a Bordetella pertussis toxin-sensitive inhibitory guanine nucleotide-binding protein. The aim of the present study was to determine whether chronic opioid treatment of R1.1 cells altered either the binding properties or the functional response associated with the kappa opioid receptor. Culturing of R1.1 cells with the kappa-selective agonist (trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl] benzeneacetamide methane-sulfonate hydrate (U50,488) for 3 hr and longer, followed by extensive washing of R1.1 cell membranes, produced a concentration- and time-dependent reduction in the binding of the kappa-selective ligand (5 alpha,7 alpha,8 beta)-(-)-N-methyl-N-(7-(1-pyrrolidinyl)-1- oxaspiro(4,5)dec-8-yl) benzeneacetamide ([3H]U69,593). Culturing of R1.1 cells with 100 nM U50,488 for 24 hr produced approximately a 50% reduction in the Bmax value for [3H]U69,593 and [3H]naloxone binding. In contrast to the reduction in binding, there was no change in the inhibition of adenylyl cyclase activity by (-)-U50,488. To determine whether kappa opioid receptor function was maintained by spare receptors after agonist-induced down-regulation, membranes from untreated R1.1 cells were incubated with 400 nM of the irreversible opioid antagonist beta-chlornaltrexamine (beta-CNA) followed by extensive washing. beta-CNA produced a 50% reduction in the [3H]U69,593 binding and a 6-fold increase in the IC50 value for (-)-U50,488 inhibition of adenylyl cyclase activity, with no change in the maximal inhibition of cyclic AMP levels.(ABSTRACT TRUNCATED AT 250 WORDS)