RT Journal Article SR Electronic T1 A further evaluation of the effects of K+ depolarization on glutamate-evoked [3H]dopamine release from striatal slices. JF Journal of Pharmacology and Experimental Therapeutics JO J Pharmacol Exp Ther FD American Society for Pharmacology and Experimental Therapeutics SP 72 OP 80 VO 261 IS 1 A1 Bowyer, J F A1 Newport, G D A1 Lipe, G W A1 Frame, L T YR 1992 UL http://jpet.aspetjournals.org/content/261/1/72.abstract AB Exogenous glutamate will evoke dopamine (DA) release from striatal slices in vitro. To further characterize glutamate-evoked DA release from striatal slices, experiments were designed to: 1) determine if sufficient endogenous glutamate can be released in vitro to presynaptically mediate [3H]DA release in the absence of Mg++ and 2) reevaluate how K+ depolarization affects glutamate-evoked [3H]DA release. Removal of Mg++ to potentiate N-methyl-D-aspartate (NMDA) receptor-mediated DA release increased 15 mM K(+)-evoked [3H]DA release to about 200% of control. The potentiation of this release was probably not mediated by NMDA receptors because it was not blocked by the glutamate receptor antagonists MK-801, 6,7-dinitroquinoxalinedione (DNQX) or kynurenate. Furthermore, the removal of Mg++ increased DA release substantially (200%) in the presence of 5 microM sulpiride and 10 microM nomifensine, indicating that DA reuptake and DA D2 autoreceptors are not primarily responsible for increased DA release. In the absence of Mg++, depolarization produced by 20 mM or greater [K+] inhibited DA released by exogenous glutamate, whereas a much higher [K+] was necessary to evoke endogenous glutamate release. In the presence of 1.5 mM Mg++, a reduction of the "Mg++ blockade" of NMDA receptors by 15 mM K+ depolarization during glutamate-evoked DA release was evaluated with and without the DA reuptake inhibitor nomifensine and the DA D2 antagonist sulpiride. DA released by K+ depolarization (Mg++ present) was markedly increased by 1 mM glutamate, but this effect was only partially reversed by kynurenate or high concentrations of either MK-801 (25 microM) or DNQX (100 microM).(ABSTRACT TRUNCATED AT 250 WORDS)