TY - JOUR T1 - Adaptive mechanisms of striatal D1 and D2 dopamine receptors in response to a prolonged reserpine treatment in mice. JF - Journal of Pharmacology and Experimental Therapeutics JO - J Pharmacol Exp Ther SP - 810 LP - 816 VL - 252 IS - 2 AU - M Rubinstein AU - J P Muschietti AU - O Gershanik AU - M M Flawia AU - F J Stefano Y1 - 1990/02/01 UR - http://jpet.aspetjournals.org/content/252/2/810.abstract N2 - Mice receiving reserpine (1 mg/kg/day) during 5 days develop behavioral supersensitivity. To study the possible molecular correlates of these adaptive changes we compared binding parameters of D1 and D2 receptors and adenylate cyclase activity in striata from normal and reserpinized mice. Saturation curves using [3H]SCH 23390 showed no changes in maximum binding capacity (Bmax) or Kd of striatal D1 receptors taken from control or 5 days reserpine-treated mice. However, [3H]spiperone saturation curves showed a 31% increase in D2 receptors Bmax with no changes in Kd. Dopamine competition of [3H]SCH 23390 and [3H]spiperone binding in mouse striatum was also performed. Analysis of data by LIGAND showed that dopamine recognizes two subpopulations for D1 and for D2 receptors. The proportion of receptors in the high affinity state (D1high and D2high) were increased in reserpine-treated animals. The addition of 100 microM GTP produced a complete conversion of D1high and D2high receptors into their low-affinity states in striata from control and reserpinized mice. Five days of reserpine treatment increased basal adenylate cyclase activity of mouse striatum in the presence of Mn++ or Mg++ ions. Concentration curves with dopamine, NaF or forskolin revealed shifts to the left and higher maximum responses without changes in EC50 values in striata from reserpinized mice. Thus, a prolonged reserpine treatment produces marked changes in D1 and D2 receptors increasing the proportion of high affinity state subpopulations and the total Bmax of D2 receptors. Also, dopamine function may be enhanced through an increment of the catalytic component of striatal adenylate cyclase. ER -