TY - JOUR T1 - Guanine nucleotide binding proteins may modulate gating of calcium channels in vascular smooth muscle. II. Studies with guanosine 5'-(gamma)triphosphate. JF - Journal of Pharmacology and Experimental Therapeutics JO - J Pharmacol Exp Ther SP - 352 LP - 357 VL - 250 IS - 1 AU - Y Y Zeng AU - C G Benishin AU - P K Pang Y1 - 1989/07/01 UR - http://jpet.aspetjournals.org/content/250/1/352.abstract N2 - Our previous studies with fluoride have indicated that G-proteins may mediate the gating of Ca++ channels in vascular smooth muscle (VSM). We now present further studies on the relationship between G-proteins and Ca++ channels in VSM using guanosine-5'-(gamma-thio)triphosphate (GTP gamma S), a hydrolysis-resistant analog of GTP. Rat tail artery helical strips pretreated with GTP gamma S in a cytosol-like solution contracted in a Ca++-dependent manner in the absence of a depolarizing concentration of K+, hormones or any other Ca++ agonists. Contraction was dependent on the concentrations of applied GTP gamma S. The ability of strips pretreated with GTP gamma S to contract in response to Ca++ was not reversed by repeated washing. Incubation with 1 mM GTP applied extracellularly did not induce tension development. Treatment with a subthreshold concentration of GTP gamma S shifted the K+ concentration-related tension curve to the left but did not alter the maximum response. The contractions induced by GTP gamma S pretreatment and by submaximal (60 mM) KCI were additive at all levels of Ca++ tested. Extra tension development could be evoked from tissue maximally contracted with GTP gamma S by adding maximal K+ and norepinephrine. The relaxing sensitivity of the GTP gamma S-related contraction to reversal by nifedipine was between those for K+ depolarization and norepinephrine, and the GTP gamma S-induced rise in tension was partially inhibited by the Ca++ channel blocker nifedipine. Ca++-elicited contraction of the GTP gamma S-pretreated strips was relaxed by forskolin, an adenylate cyclase activator, 3-isobutyl-l-methyl-xanthanine, a cyclic nucleotide phosphodiesterase inhibitor, and dibutyryl cyclic AMP.(ABSTRACT TRUNCATED AT 250 WORDS) ER -