PT - JOURNAL ARTICLE AU - N M Porter AU - M Radulovacki AU - R D Green TI - Desensitization of adenosine and dopamine receptors in rat brain after treatment with adenosine analogs. DP - 1988 Jan 01 TA - Journal of Pharmacology and Experimental Therapeutics PG - 218--225 VI - 244 IP - 1 4099 - http://jpet.aspetjournals.org/content/244/1/218.short 4100 - http://jpet.aspetjournals.org/content/244/1/218.full SO - J Pharmacol Exp Ther1988 Jan 01; 244 AB - Maximally tolerated doses of N6-[(R)-1-methyl-2-phenylethyl] adenosine (0.50 nmol/hr/2 wk), 5'-N-ethylcarboxamide adenosine (NECA, 0.04 nmol/hr/2 wk) or deoxycoformycin (5 nmol/hr/1 wk) were administered i.c.v. to rats using mini-osmotic pumps. Adenosine receptor function was subsequently assayed using both ligand binding and adenylate cyclase assays. Binding to A1 receptors was quantitated using [3H]N6-[(R)-1-methyl-2-phenylethyl]adenosine, a selective agonist ligand at A1 receptors. Differences in the binding of this ligand and that of [3H]NECA, which binds to A1 and A2 receptors with similar affinities, were used to quantitate A2 receptors. None of the treatments affected A1 receptor function as assessed by both ligand binding and adenylate cyclase assays. A2 receptor binding and A2 receptor-mediated stimulation of adenylate cyclase were blunted in striatal membranes from NECA- and deoxycoformycin-treated rats but unaffected in striatal membranes from N6-[(R]-1-methyl-2-phenylethyl]adenosine-treated rats. All three pretreatments attenuated D1 dopamine receptor-mediated stimulation of adenylate cyclase in striatal membranes. These results suggest that 1) the A2 adenosine receptor system is susceptible to desensitization and 2) different mechanisms are involved in the NECA- and deoxycoformycin-induced desensitization of A2 adenosine receptor and D1 dopamine receptor systems. It is suggested that the D1 dopamine receptor desensitization is, in fact, due to the tonic stimulation of adenosine A1 receptors.