TY - JOUR T1 - Inhibition of gastrointestinal transit by morphine in rats results primarily from direct drug action on gut opioid sites. JF - Journal of Pharmacology and Experimental Therapeutics JO - J Pharmacol Exp Ther SP - 945 LP - 949 VL - 237 IS - 3 AU - L Manara AU - G Bianchi AU - P Ferretti AU - A Tavani Y1 - 1986/06/01 UR - http://jpet.aspetjournals.org/content/237/3/945.abstract N2 - The local intestinal component of the constipating action of morphine was assessed through several integrated approaches in an in vivo animal model. The doses of systemically administered morphine reducing to 50% of drug-free controls (ID50) the small intestinal transit of a charcoal meal fed by gavage to overnight fasted rats were 0.04 and 3.8 mg/kg i.p. and p.o. and 0.5 mg/kg either s.c. or i.v., respectively. Transit inhibition with any of these morphine doses occurred within 10 min and was still measurable 20, 30, 45 and 240 min after i.p., i.v., s.c. and p.o. administration, respectively. Morphine given by any of these systemic routes did not reduce significantly transit in rats receiving the putative peripheral antagonist quaternary naloxone (1 mg/kg i.p., 5 min before morphine) that, unlike naloxone, failed to reverse transit inhibition (to about 50% of drug-free controls) induced by 0.08 mg/kg i.c.v. of morphine. Radioassay of thin-layer chromatograms of extracts of central nervous system, plasma, small intestine and small intestinal longitudinal muscle of rats given tritium-labeled morphine and also tested for gastrointestinal transit, showed that morphine concentrations in the longitudinal muscle (with attached myenteric plexus) after i.v., i.p. and s.c. injection fell within a relatively narrow range and were consistent with the appropriate transit scores. Morphine levels in the central nervous system of the same rats were lower than in any other tissue assayed, presented considerable differences depending on administration routes and did not correlate at all with the corresponding intestinal effects. Morphine administered directly into the rat cerebral ventricles effectively inhibits gastrointestinal transit through an opioid-sensitive central nervous system-located action site.(ABSTRACT TRUNCATED AT 250 WORDS) ER -