RT Journal Article SR Electronic T1 Effects on calmodulin of bepridil, an antianginal agent. JF Journal of Pharmacology and Experimental Therapeutics JO J Pharmacol Exp Ther FD American Society for Pharmacology and Experimental Therapeutics SP 737 OP 741 VO 230 IS 3 A1 H Itoh A1 T Ishikawa A1 H Hidaka YR 1984 UL http://jpet.aspetjournals.org/content/230/3/737.abstract AB Using biopharmacological techniques, we determined the effect on calmodulin of bepridil, a Ca++ channel blocker. We used two Ca++/calmodulin-dependent enzymes, Ca++/calmodulin-dependent cyclic nucleotide phosphodiesterase from bovine brain and myosin light chain kinase from chicken gizzard. Bepridil inhibited the calmodulin-induced activation of Ca++/calmodulin-dependent cyclic nucleotide phosphodiesterase and the concentration of this drug producing 50% inhibition (IC50) of this enzyme was 8 microM. There was no significant effect on unactivated Ca++/calmodulin-dependent cyclic nucleotide phosphodiesterase (in the absence of Ca++-calmodulin), up to a concentration of 100 microM. Bepridil inhibited specifically Ca++/calmodulin-dependent phosphorylation of chicken gizzard myosin light chain with an IC50 value of 18 microM. Moreover, this agent produced a marked displacement of [3H]N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide, an antagonist that interacts selectively with calmodulin. The influence of bepridil on the dose-response curves of mesenteric arterial strips for CaCl2, norepinephrine and serotonin differed from the influence seen with nifedipine, another Ca++ blocker. Bepridil (100 microM) suppressed the Ca++-induced contraction of saponin-skinned mesenteric arteries and calmodulin (26 microM) reversed partly the relaxant effect of this agent. These results suggest that the effect of bepridil on the cardiovascular system is due not only to its Ca++ channel blocking action but also to a calmodulin antagonistic action.